407

CADRe: Gun Groupe lini et Vun C-ev de dimension linie

I Outils théoriques 17 Représentation

Dél1: On appelle représentation linéaire d'un groupe G la donnée d'un espace vectoriel V et d'un morphisme de Groupe p: G -> GL(V).

dua dimension de la représentation est la dimension du C-ev V.

Ex & * l'inclusion du Groupe orthogonal C(d) dans GLd(R) fait de Ra une représentation de O(d)

* C est une représentation de Z par l'intermédiaire du

morphisme de Groupes Z , on le note ((X).

Dél3: Si p est imjectif, on dit one V est une représentation

- Notons: si dim(V) = d et si (e1,-,e1) est une base de V, on note Rv(g) la matrice de p(g) chans la base (e1,-,e1)

21/Caraclère

Dél 4: Le CARACTÈRE ZV de V est l'appl. G → (T On appelle degré du CARACTÈRE ZV l'enlier 2v(1) = dim(V)

Rmg 5: Si dim(V) = 1, alors le chradère est LLN morphisme de G dans C

Aope. 20 est whe function centrale

Rmo 7: PV(g) est diagonalisable et ses valeurs propres (50:18: & dim(V) = dim(V2)

Appl. 8: 4 g ∈ G 2 v(g-1) = 2v(g)

3/Construction de représentations [COL] * Dét 9: Soient VI et V2 deux représentations de G de Représentation pur est appélée représentation somme directe et définié par l

Priting: G GL(VIEVE)
q ((vi, vz)) (A, (g)(vi), Prz(g)(vz))

Prop 10: 2 VI @VZ = 2VI + ZVE

* Si X est un ens. Jini muni d'une action de G donnée.

Défli: LA Représentation de permutation Vx est définie comme l'espace vectoriel Vx de dimension IXI, de base (esc) muni d'une action linéaire de G, q.ex= cq.xx

Prop1 2: 2/x(g) = 1/xex, d. x=20]

Ex 13: En prenant X=G et laction par translation, on obtient une représentation appelée représentation réculière et notée. VG.
On a 2v6(1)=1G1 et 2v6(q1=0 si q6G1117

* Soient VI et V2 deux représentations de G et soit 11: VI-12 rune application lineaire.

Del 14: On definit la représentation Hom (VI, VZ) par Phom (VI, VZ) (g)(u) = Pvz (glouo Pv, (g·))

Prop 15: 2 Hom (V, V2)= 2v, (g) x 2v2(g)

DET IT: On dit aue deux représentations Vi et V2 de G sont isomorphes s'il existe un isomorphisme lineaire u: V1-3 V2 commutant à l'action de G (2000, 191-9, 1910u)

<u>CEO. 18:</u> ★ dim(V1) = dim(V2) ★ Rv1(g) = T- Rv2(g)T où TEGLd(C)

Prop 19: Si Vi et V2 sont isomorphes, Alors Zv. (g) = Zvz (g) Y966

II- Décomposition des représentations

[OLIZA] DEJ20: Une sous-Représentation de V est un sev de V Appl. 30: * Deux Représentations VI et V2 de G AYAnt les -STABLE DAR G. mêmes caradères sont isomorphes * Une représentation V de G est îrréductible ssi (2vi2v) -X Ex21: Le sous-espace vertoriel H= vect (1) est une Sous Représentation pour la représentation par permutation COR 31: Si West irréductible Alors W Apparait dans la de Su. Représentation résulière avec la multiplicité dim W COLINA Délad: On dit oue Vest inréductible si V ne possède pres de Sous représentation autre oue O et V. Appl. 32: * \(\(\lambda \) \(\lambda \) \(\text{formule cle Burnside} \) UN CARAdère irréductible est le cARAdère d'une repré. Sentation irreductible. * Si g + 1, Alors & dim(W12w(g)=0 Rma 23: Toute représentation de dim 1 est irréductible. III- Wilisation en pratique des tables Prop 24: Il existe sur V un produit schlaire oui est invariant sous l'action de G: (v. 142) = 1 E (g. v. 1902) où (01) est un pes quelconque. de caraclères 1'/ Définition et premiers exemples Théo 25: (Maschke) Toute Représentation de 6 est somme Dé 33: Soit C=1 Conj(G)1. LA table de caradère des CO directe de Représentations irréductibles est un tableau exc dont les coefficients sont les valeurs Théo 25: Lemme de Schur. (*) Ala fin du plan [(d.188] Del 26: Rc(G)= } fonctions centrales] des chandères irréductibles sur les classes de conjuenisar On munit RC(G) du ps <11.> délini par <0.102>1 I D. 1910/19 Prop34: Les celonnes du tableau sont orthogonales Х pour le produit schlaire Théo 27: (Frobenius) Les chradères irrêductibles forment a a CCO ZINZ A Lune base de l'espace des jonctions centrales. Ex 35, * Table de Z/27 13 21/Applications de ces deux thms principaux * Table de Sa 2 Da Cor 28: de nombre de Représentations irréductibles de CRau ricolation d'anoie ± 27 53 (4,2) (4,2,3) Gest égal au nombre de classe de conjugaison de G. - Cox 29: Si V est une Représentation de G, si V. W.O. OW 2€ " A CARACTERE ASSOCIE à la représentation une décomposition de V en somme directe de Représentat 23 au stabilise un triande écuibléral irreductible et si WE Irr(G) Alors le nombre mw deWi Qui sont isomorphes a West EGAL à < ZWIZV>. *Table de Su: (time 1) DYPT, CPEY En prakticulier, il ne dépend pas de la décomposition et 2.28 100 (FMISN) M 21/Détermination des sous-croupes distincués WEIN(G) Prop 36: K2v=10,EG / 2v(g)=2v(A)) AG TPEY

Prop 37: Les sous-croupes distincués de G sont exadement du type (1 k2, où I c) 1,-, r) rienbr de caradère

Appl. 38: Gest simple ssi Vi = 1, Vg EG, Zi(g) = 2i(1)

EX39: *TAble de Du CRauch 59

	ets.						
	104	Id	121	۾ ۲	Sa	Sr ₂	
	2.	A	4	Λ	A	1	į
	<u>. 4 </u>	4	Λ	1	1	= -	
i	- 43		1	1	- 4	-7	
	- 24	4		- <	· /4	1	
		4. 1		(°)	1754.		

Représentation oui lixe un chiné

Les sous- croupes distingués sont: Du, Ku, ZILIZI, 17265

*TAble de Su: Su, Au, Vu, IIdi

31 CAS des Gloupes Abéliens

DE 40: On note & le dual de G. Il est torme des morphisme de Groupe de G dans C+

Théo41: Gest abélien sei toutes ses représentations sont de dimension 1.

[COL] Theo 42: Si G est un croupe fini commutatif, il existe rem et des entiers Mi..., Nr où ni est l'exposant de G et Niti [Ni si i fr-1 tel que G & ZINIZ X -- XZINIZ

EX 43: * Table de CARACIÈTE de Klein K4= ZLIZZX ZZIZZZ

Ku	(0.0)	(1.04	(0,11)	(1,1)
21	1	A	Λ	A
22	4.	Λ	-1	~~)
53	4	-1	1	\
-4	1	1	L	1

* Table de CARACTÈRE de ZINZ. Notons W=exp(2in) des caractères sont 2j: ZZINZ -> C+

(Figure 2 en Annexe) R -> WRJ

le caractère associé à la

[PEY4]

47 Whilisphion du quotient

Prop 44: Soit NAG un sous Groupe distincué de G. Soit Pu une représentation de GIN SUI UN ev U. Alors il existe une représentation canonique de G suil telle que les sous-représentations de 11 sous l'action de G/N soient exactement celles de 11 sous l'action de G.

Prop45: Si pu est irreductible, la représentation po de G est aussi îrréductible.

Prop 46: Notons DCG) le Groupe dérivé de G. Alors le nor de représentation de climension 1 est 161/18/671

Appl47. On peut obtenir des tables de caractères d'un Groupe plus lacile en utilisant la propriété 44.

* D(U4)= K4 et A4/K4 ~ Z13Z On peut donc déduire de la table de Z1377 la dable de OA4 (FIGURE 3 en Annexe)

* D(D4)= 1 ± 4 \ et D4/ 1 ± 1 > K4 On peut donc trouver ta table de Du

elona I2= J2= K2=-Id, IJ=JI=K, JK=KJ=I -IK = KI = I

D(IN)= 1 ± Toll et IN/1 ± Id \ ~ K4. On peut donc trouver la table de IN (Figure 4 en minere)

Rma 48: Dy et IVI ont la même table de caractères mals ilsne sont pas isomorphes. 1) Keyper important

(*) Théo 25: (Lemme de Schur) Soient VI et 12 deux Réprésentations irréductibles de G.

1) Si VI et V2 me sont DAS isomorphes, Alors Hom6(V1,1/2) = 1 4 EHom (V1,1/2) , wop, (g) = P. (g) ou's=0 2) Si VI= V2, Alors Homa (VI, V2) est la droite des homothèlies

[KEV]

CPEYD

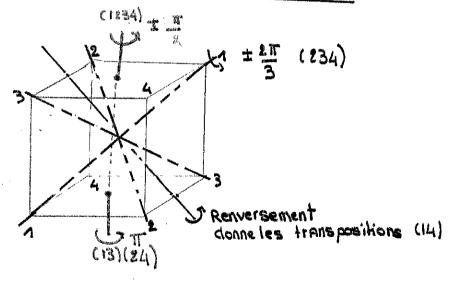
CHasu

Annexe:

Figure 1 = Table de S4

54	Cum.	E zna	८ ೨೧ _®	[222]	C43
2.	1	1	1	Ä	1
2٤	1	-1	1	1	-1
₹ ⊤ '	. 3	1	0	1	}
5 (npe	3	1	0	-1	· /
	2,	0	11.	9	Ö

isometrie oui stabilise un tétroèdre isometrie positive oui stabilise un cube



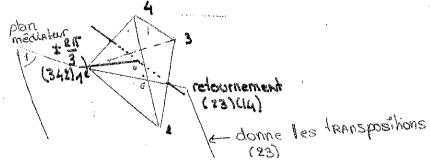


Figure 2 = Table de ZInz CRY

ZINZ	O 4	1 3		n-1 ~	n-1 ^
2,	1	1	·	1	4
22	1	W	•	W 4-5	WB-/
ŧ	:	:		 	1
2 0-1	1	W 10-2		Mensilve	10/(11-2)的小
1-U g	1	W #1-1	1	₩ (n-1) (n-2)	

FIGURE 3 = TAble de A4 [Rauch]

Ay	(111)	(123)	(132)	(12)(34)
21		7	71	1
_ <u>}</u> 2	1	V	W ²	7
23		2 44,000,000,000,000,000,000,000,000,000	W	1
34	/ 3	0	Ò	-1

TABLE de ZZ/3ZZ

chandère resoure à la représentation des isométries positives

Figure 4= Table de Harautetinèdre réculier.

<u>IH</u>	Id /	- エ&	\ t T	こまし	JIK
21	Λ	1	1	1	
<u></u> 22	1	1	1	-1	
_23	A	1	-1		
24	1	1			
25	2	- 2	0		

TRauch > RAUCH-Les Groupes linis et leurs représentations

[PEY] PEYRE-L'Alcèlore discrète de la transjoimée de Four

[COL] COLMEZ - Eléments d'analyse et alcebre

Table de S_4

Référence : Peyré : Algèbre discrète de la transformée de Fourier p.229

- Théorème -

La table de caractères de \mathcal{S}_4 est :

	<u>[1]</u>	[6] (12)	[8] (123)	6 (1234)	[3] (12)(34)
<i>X</i> 1	hard	1	1	1	1
$\chi_{arepsilon}$	14	-1	1	-1	1
χ_s	3	1	0	-1	-1
$\chi_{\mathrm{Hom}(V_s,V_s)}$	3	-1	0	1	-1
χ_5	2	0	-1	0	2

Preuve:

Classes de conjugaison

 S_4 possède 24 éléments repartis en 5^1 classes de conjugaison². En effet, il y a :

— Le neutre (1) seul dans sa classe.

$$\binom{4}{2} = 6$$
 transpositions (12)

$$-2 \times {4 \choose 3} = 8$$
 3-cycles (123)

$$-3 \times 2 = 6$$
 4-cycles (1234)

$$-2 \times {4 \choose 3} = 8 \text{ 3-cycles (123)}$$

$$-3 \times 2 = 6 \text{ 4-cycles (1234)}$$

$$-\frac{1}{2} \times {4 \choose 2} = 3 \text{ double transpositions}^3 (12)(34)$$

Représentation triviale

Elle est de dimension 1 car elle va dans $\mathbb C.$ On note son caractère $\chi_1.$ Il vaut 1 tout le temps, on complète la première ligne.

Représentation alternée

Elle est de dimension 1 car elle va dans $\mathbb C$ et correspond au morphisme de signature ε . On note son caractère χ_{ε} . On complète la seconde ligne.

Représentation standard

(p. 203) Regardons la représentation naturelle de S_4 sur \mathbb{C}^4 obtenue par permutation des vecteurs de base. Le caractère associé $\chi_{\rm p}$ est la trace d'une matrice de permutation, c'est-à-dire le nombre de 1 sur la diagonale. Autrement dit $\chi_p(\sigma)$ est le nombre de points fixes de σ . On a donc $\chi_p = [4, 2, 1, 0, 0]$

Cette représentation laisse $H_0 = \text{Vect}\{(1,1,1,1)\}$ stable. On note H_1 le supplémentaire de H_0 . On a $H_1 = \{(x_1, \ldots, x_4) \in \mathbb{C}^4 / x_1 + \cdots + x_4 = 0\}.$

Sur H_0 , la représentation par permutations est la représentation triviale. On pose $ho_s=
ho_p|_{H_1}$ la représentation tation standard. Elle est dimension 3=4-1. Il faut vérifier qu'elle est irréductible. Pour cela, on calcule son caractère:

$$\chi_s = \chi_p - \chi_1 = [3, 1, 0, -1, -1]$$

Le calcul nous donne

$$\langle \chi_s, \chi_s \rangle = \frac{1}{24} \left(1 \times 3^2 + 6 \times 1^2 + 8 \times 0^2 + 6 \times (-1)^2 + 3 \times (-1)^2 \right) = 1$$

 χ_s est donc bien irréductible, on complète la troisième ligne.

^{1.} Donc il y aura 5 caractères irréductibles

^{2. 2} éléments de S_4 sont conjugués ssi ils sont de même type

^{3.} à supports disjoints!

Les 2 dernières

On note n_4 et n_5 les degrés des 2 derniers caractères restants (on en a 3 et on sait qu'il y en a 5). Mais on sait que $\sum n_i^2 = 24$ donc $n_4^2 + n_5^2 = 24 - 1^2 - 1^2 - 3^2 = 13$. Les seuls solutions possibles sont 3 et 2.

L'avant dernière

On va regarder la représentation de morphismes donné par les représentations standard et alternée. On pose $\chi_{\text{Hom}(V_s,V_e)}$. On sait que le caractère va être de degré $3 \times 1 = 3$.

Par propriétés, on sait que $\chi_{\mathrm{Hom}(V_s,V_\varepsilon)} = \chi_s\overline{\chi_\varepsilon} = \chi_s\chi_\varepsilon$. On calcule (4ème ligne), ce caractère est bien différent des autres et on peut faire le calcul pour voir que $\langle \chi_{\mathrm{Hom}(V_s,V_\varepsilon)}, \chi_{\mathrm{Hom}(V_s,V_\varepsilon)} \rangle = 1$ ie la représentation est irréductible.

La dernière

On sait que le degré du caractère va être 2. On peut donc compléter $\chi_5((1)) = 2$. On remplit ensuite le reste de la ligne par orthogonalité des colonnes.

Vision géométrique pour $\chi_{\operatorname{Hom}(V_s,V_\varepsilon)}$ (RAUCH p.47)

Une des réalisations de S_4 est Isom⁺(C_6). Pour cela on fait agir le groupe S_4 sur les 4 diagonales du cube. On va noter χ_{cube} cette représentation.

L'identité ...

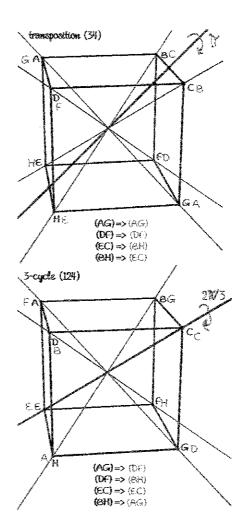
$$\chi_{\text{cube}}((1)) = \operatorname{tr}(\operatorname{Id}) = 3$$

Une transposition s'identifie à un demi-tour (angle $\pm \pi$) autour de la médiatrice commune à deux arêtes symétriques par rapport au centre du cube.

$$\chi_{\text{cube}}((1)) = 1 + 2\cos(\pi) = -1$$

Un 3-cycle est identifié à une rotation d'angle $\pm \frac{2\pi}{3}$ autour de l'une des 4 diagonales du cube.

$$\chi_{\text{cube}}((123)) = 1 + 2\cos\left(\frac{2\pi}{3}\right) = 0$$



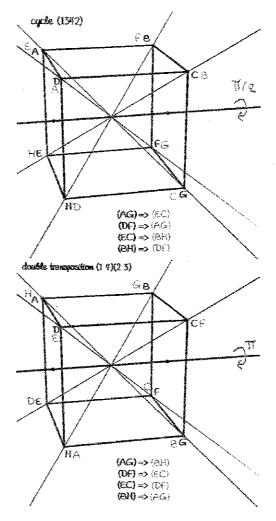
Un 4-cycle s'identifie à une rotation d'angle $\pm \frac{\pi}{2}$ autour de l'un des trois axes quaternaires du cube (axe passant par les centres de deux faces opposées)

$$\chi_{\text{cube}}((1234)) = 1 + 2\cos\left(\frac{\pi}{2}\right) = 1$$

Une double transposition est identifiée à un demitour (angle $\pm \pi$) autour de l'un des trois axes quaternaires du cube (axe passant par les centres de deux faces opposées)

$$\chi_{\text{cube}}((12)(34)) = 1 + 2\cos(\pi) = -1$$

On obtient bien $\chi_{\text{cube}} = \chi_{\text{Hom}(V_s,V_s)} = [3,-1,0,1,-1]$. On calcule $\langle \chi_{\text{cube}}, \chi_{\text{cube}} \rangle$ pour vérifier qu'elle est irréductible.



Notes:

✓ A l'oral, on ne peut mettre pas en lemme le fait que 2 éléments sont conjugués ssi ils ont même type (trop long). On fait les classes de conjugaisons directement sur la table. On remplit la table au fur et à mesure. ✓ Temps : feutre 11'. \Rightarrow pour rallonger : table de S_3 (Rauch) ou dire vision géométrique

Chapitre 46

Théorème de structure des groupes abéliens finis

Références: Colmez, Éléments d'analyse et d'algèbre (et de théorie des nombres), p 250-252

On rappelle que l'exposant d'un groupe G est le plus petit entier n tel que pour tout $g \in G$, $g^n = e$. Comme pour tous g, $h \in G$, gh est un élément d'ordre ppcm(o(g), o(h)) car G est abélien, l'exposant est donc le ppcm des ordres des éléments du groupe, et aussi le plus grand des ordres des éléments du groupe.

Théorème.

Si G est un groupe abélien fini, alors il existe $r \in \mathbb{N}$ et des entiers $N_1, ..., N_r$, où N_1 est l'exposant de G et $N_{i+1}|N_i$ tels que

$$G \simeq \prod_{i=1}^r \mathbb{Z}/N_i\mathbb{Z}.$$

Comme G est un groupe abélien fini, les classes de conjugaisons n'ont qu'un élément. On a donc n=|G| représentations irréductibles de degré 1 par Burnside.

Puis on remarque que les caractères irréductibles sont des morphismes. Ce sont donc des éléments de \hat{G} , le groupe abélien des morphismes de G dans \mathbb{C}^* .

Réciproquement, tout élément de \hat{G} fournit une représentation irréductible, donc un caractère irréductible. \hat{G} est donc le groupe des caractères irréductibles de G.

Lemme.

On pose l'application

$$i: G \to \widehat{\widehat{G}}$$

 $g \mapsto (\chi \mapsto \chi(g))$,

alors i est un isomorphisme de groupes.

Démonstration. i est bien un morphisme de groupes car les caractères sont des morphismes. En effet,

$$i(gh)(\chi) = \chi(gh) = \chi(g)\chi(h) = i(g)(\chi)i(h)(\chi).$$

On a vu que \hat{G} est l'ensemble des caractères irréductibles. Il est donc de même cardinal que G. On a $\left| \hat{G} \right| = \left| \hat{\hat{G}} \right|$, en appliquant le même raisonnement aux éléments de $\hat{\hat{G}}$, qui sont les caractères irréductibles sur \hat{G} car \hat{G} est abélien.

D'où $|G| = \left| \widehat{\widehat{G}} \right|$.

Il suffit de montrer que i est injectif.

Soit $g \in G$ tel que $i(g)(\chi) = 1 = i(e)(\chi)$. Alors $\forall \chi \in \widehat{G}, \ \chi(g) = \chi(e) = 1$. On décompose $\mathbbm{1}_{\{g\}}$ dans la base des caractères.

$$\begin{split} \mathbb{I}_{\{g\}} &= \sum_{\chi \in \widehat{G}} \langle \mathbb{I}_{\{g\}}, \chi \rangle \chi \\ &= \sum_{\chi \in \widehat{G}} \frac{1}{G} \sum_{h \in G} \overline{\mathbb{I}_{\{g\}}(h)} \chi(h) \chi \\ &= \frac{1}{G} \sum_{\chi \in \widehat{G}} \chi(g) \chi \\ &= \frac{1}{G} \sum_{\chi \in \widehat{G}} \chi \end{split}$$

On a donc en évaluant en e:

$$\mathbb{1}_{\{g\}}(e) = \frac{1}{G} \sum_{\chi \in \widehat{G}} \chi(e) = 1.$$

D'où g = e et i est bien injective.

Lemme.

G et \hat{G} ont même exposant.

Démonstration. Soit N l'exposant de G, on a $\forall \chi \in \widehat{G}$, $\forall g \in G$,

$$\chi^N(g) = \chi(g)^N = \chi(g^N) = \chi(1) = 1.$$

L'exposant de \hat{G} est inférieur ou égal à N.

On peut appliquer le même raisonnement à \hat{G} pour obtenir que N est inférieur ou égal à l'exposant de \hat{G} (car G et \hat{G} ont même exposant par le lemme précédent).

Passons à la preuve du théorème.

Démonstration. Démontrons le théorème par récurrence sur n = |G|.

Pour n = 1, le résultat est évident.

On suppose n > 1, notons N_1 l'exposant de G.

• Par le lemme précédent, il existe un élément $\chi_1 \in \widehat{G}$ d'ordre N_1 . On a donc $\forall g \in G$, $\chi_1(g)^{N_1} = 1$. Donc $\chi_1(G)$ est un sous-groupe des racines N_1 -ièmes de l'unité et on a égalité car χ_1 est d'ordre exactement N_1 .

Soit $x_1 \in G$ tel que $\chi_1(x_1) = \exp\left(\frac{2i\pi}{N_1}\right)$ et soit p l'ordre de x_1 .

On sait que p divise N_1 . Puis $\chi_1(x_1^p) = 1 = \exp\left(\frac{2ip\pi}{N_1}\right)$, donc N_1 divise p et finalement x_1 est d'ordre N_1 .

• On pose $H_1 = \langle x_1 \rangle$. Montrons que $G \simeq H_1 \times \operatorname{Ker}(\chi_1)$. Comme $H_1 \simeq \mathbb{Z}/N_1\mathbb{Z}$ et $|\operatorname{Ker}(\chi_1)| < n$, on aura le résultat en appliquant l'hypothèse de récurrence.

En effet, si on décompose $\operatorname{Ker}(\chi_1)$ en $\prod_{i=2}^{n} \mathbb{Z}/N_i\mathbb{Z}$ avec $N_{i+1}|N_i$, alors comme les éléments de G sont d'ordre

divisant N_1 , on aura $G \simeq \prod_{i=1}^r \mathbb{Z}/N_i\mathbb{Z}$ avec $N_{i+1}|N_i$.

 χ_1 induit un morphisme surjectif α de H_1 sur \mathbb{U}_{N_1} , puis par égalité des cardinaux, α est un isomorphisme. Soit $x \in G$, alors

$$x = \alpha^{-1}(\chi_1(x)) \left(\alpha^{-1}(\chi_1(x))\right)^{-1} x$$

Par définition de α , $\alpha^{-1}(\chi_1(x)) \in H_1$.

$$\chi_1\left(\left(\alpha^{-1}(\chi_1(x))\right)^{-1}x\right) = \chi_1\left(\left(\alpha^{-1}(\chi_1(x))\right)^{-1}\right)\chi_1(x) = (\chi_1(x))^{-1}\chi_1(x) = 1,$$

```
\begin{array}{l} \operatorname{donc} \left(\alpha^{-1}(\chi_1(x))\right)^{-1} x \in \operatorname{Ker}(\chi_1). \\ \operatorname{On a donc bien} G = H_1 \operatorname{Ker}(\chi_1). \\ \operatorname{On a aussi} H_1 \cap \operatorname{Ker}(\chi_1) = \{e\} \operatorname{car} \chi_1 \text{ est injectif sur } H_1. \\ \operatorname{Il vient donc que} G \simeq H_1 \times \operatorname{Ker}(\chi_1), \operatorname{ce qui termine la preuve}. \end{array}
```

Remarques : • On peut déduire de ce résultat le théorème de structure des groupes abéliens de type fini. On applique le théorème précédent au sous-groupe de torsion T, puis on peut prouver qu'on peut écrire $G \simeq T \times L$ avec L sans torsion. On montre en se donnant une base que L est isomorphe à \mathbb{Z}^d . Cela donne le résultat. • Ce résultat peut être généralisé en le théorème de structure des modules de type fini sur les anneaux principaux.

Adapté du travail de Alexandre Bailleul.