unique base (ei); de E tille que YK, ex=gx, c'est la let 2.2: Soit ACE, A={{EFTYzeA, {(x)=0}} ost un sono-espace base antidouble.

From 1.10. Pour (g:); une base de E* il existe une Del 2.1. xEEct 66 Et aout die outrograms on plat =0

, appelie base thate	4		Det 1.5. Le dual de E, noté E* en l'ensemble de	y wa	4	Africa trabe	est une forme linéaire de 12".	Def 1.1: Une forme linéaire de E est une application linéaire de E est une application	1) Bross duale et antéduale	TIRE was bited	Cadre: IK un top as et E un K-o navo vortraiel de dimensión in
1) Orthogoslité en dimension finne	It showship of the or the	Rep 1.17: & injection : E-ETA SC 1->(K) but we comprise	Con 1.16: Si m>1, tout huppenplande Ma (PK) remontage Gly (PK).	Con 1.15: Soit Remark) * Golle and HX, Y) & Mar (K) * (RXY) = R(XX) [From 1.11. 4: MM(K) -> MM(K)* A J (X-bc/AX)) est un isomorphisme	Thum 1.13 (Musson-Butrand): Si m=0, Q: E->E* définit)	alors tip 1764, > definit un isomorphisme.	Then 1-12 (Ripora): Si F of multiple !	i. e. un morphisme tol que pour tonte base e de t de	TIR's airs of the second second from 1.11; Il in existe sas of isomorphisms comoving to these	2) Loonorhighes GNE*

Towas. S. Februm sovereque vedoviel de E, on a Del 2.3. Soit BCE", BO= {xeE|Ufeb, pa)=0} en un sio-small vedovelde Eappale orthogonal de E. din Ft dim Ft = Nin E. Thing. Thun 2.6. Si G est un sono-employe vestoriel de E + or a 12et 2.77; Sol F un it-emplo ucclosiel de dimension din 6+ dim 60 - dim E*

Ilm 2.7; God= C

d'équations lineaires de 18º à 10 ligais, cle roma, r., est Co 2.8. L'ensemble dies refutions d'un système de dimensión m.r. Con 2.3; Soil F Um sons-espace vedoviel de 6 de dimensión Prop 2.13; 19[4]=19[4]
4. alors il existe m= 0 9, alors it exists m-9 forms linearies lineariement indipendants (Ri); telle que: F= () kn (Pi)

et à sa forme quadratique appoiée. On mote At-jyet/Vech/Brytill Def 2.22. Soit & eun endomorphisme Dissoire de E. Del 7, 20: 501 & we forme bilineare symphique are On robe auron hor (d) = Ept.

Prop 2.11: le sont de son-emais veikonels de E.

from 2,12: dim F + dim F = dim F + dim (FAKO (4)) Ag 2-13; Fit = F+18, (d)

Lef 2.17: Con out one p et dépirie si fact (p(x) 20 = 50} hor 2, 15. Si OIE en définie, FOFF=E Box 2.16: 5 & ex definie, F=(Fe)}

2) Turnitorition

finit, u.E. 7 was application linearie, alow la fonction to the the application linearie, application linearie, application hamposée de u.

hop 2.20: ko((a)= (Ina) +

Fron 2.22; Felt dable per unit soulements i Ftert washe por ta. En dit que b est cyclique o'il existe x El tel que E= Vect (x, f(x), ..., 6"-4(x)).

b-sable, tell que: Flow 2.23 (réduction de Fodrenius): Il existe une anite Fr, Fr.... Fr de son-espace vertoriel de E, foro

- E-OF:

III / Application à la dualité projective

des hyperplans de E et le dual projectif P(E*): or allo out même norgan. deux formes lineaines cont proportionnelle i et conlement Prop 3.1: Il existe une bisection entre l'ementle of

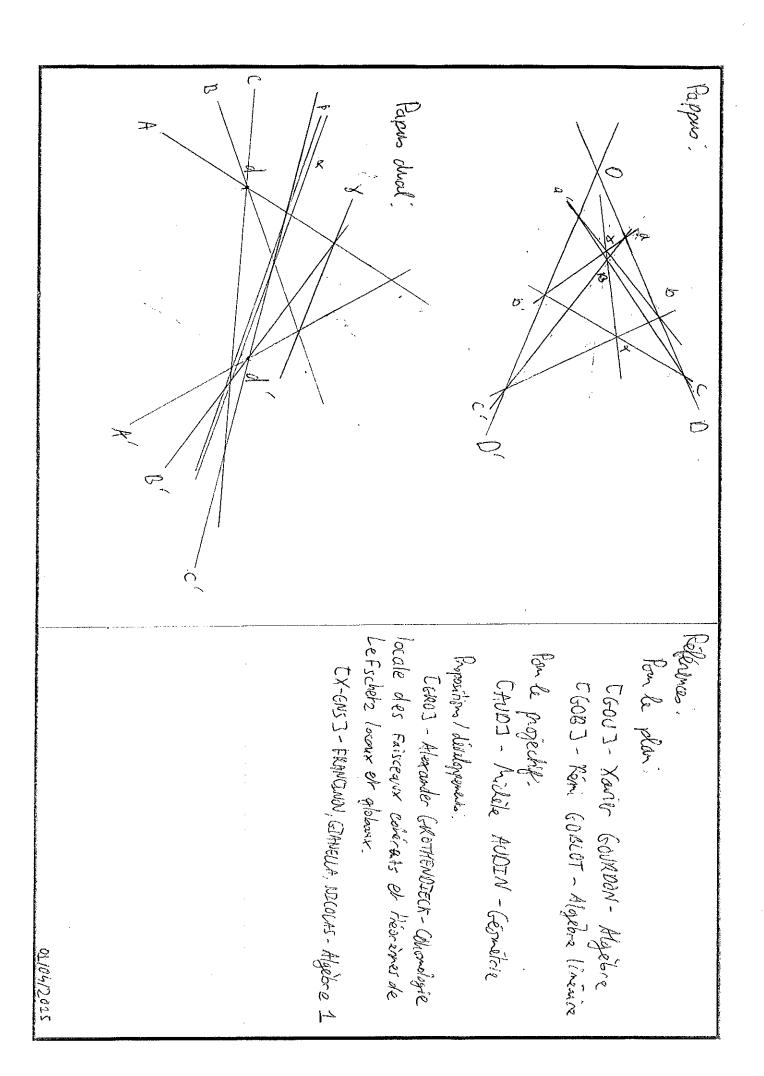
,		.		· · · · · · · · · · · · · · · · · · ·		7
dusike (ab)	dans P(E)	thois points dignes	$a \in D$	D) distacte P(E)	a point de P(E)	
point ANB	concornantes dam P(E+)	trop drafts	ABd	d point of P(E*)	A drote de P(E*)	

- tons les BIF; sont cycliques. - Pour P; le polyrome minimal de BIF; Ville, r-18, Parle V= (ab')Ma'b) oont alignée. Alex les points x= [bc]n(bc), B=(ac)n(ac) et trong points de 10' distincts entre eux et de 0. distants entre eux et de 0 sur 10; a / b et c Thm 3.3 (Report): Sout D of dense drokes of in plan projectif, accomb on 0; a, b et a boro points

Applie 3.2: En dimensión deux, on a les conespondence emiente: et C' brois distribute du plan et de (d.d.) A, B et C trois chorte distincte de ce plan, parsent par d'et distincte de (dd) et 4, B Los 3.4 (lapper duck): Sient of el d'oberes points distincts d'un plan projectif. Sient perbount par d. Moro his drotte.

< 그 (Bnc')(B'nc))</p> β= ((AΛC')(A'ΛC)) Y= ((ANB) / A'NB))

Sort Concounter. [4. annexe]



Isomorphisme entre l'ensemble des matrices et son dual

Arnaud Poinas

1 avril 2015

Référence: Serge Francinou - Oraux X-ENS, Algèbre 1, p.329-331.

Leçon: 159.

Énoncé: L'application

$$\phi: \begin{array}{ccc} \mathcal{M}_n(\mathbb{K}) & \to & \mathcal{M}_n(\mathbb{K})^* \\ A & \mapsto & f_A : (X \mapsto Tr(AX)) \end{array}$$

est un isomorphisme entre $\mathcal{M}_n(\mathbb{K})$ et son dual.

Preuve: Il est clair que quel que soit $A \in \mathcal{M}_n(\mathbb{K})$ l'application f_A : $(X \mapsto Tr(AX))$ est linéaire (et donc dans le dual). De plus, comme $\mathcal{M}_n(\mathbb{K})$ et son dual ont même dimension alors il suffit de montrer l'injectivité afin de démontrer le théorème. Pour cela, on prend $A \in \mathcal{M}_n(\mathbb{K})$ tel que $f_A = 0$. On a donc

$$\forall X \in \mathcal{M}_n(\mathbb{K}), \ Tr(AX) = 0$$

En particulier, si on pose $A=(a_{i,j})_{1\leq i,j\leq n}$ et $(E_{i,j})_{1\leq i,j\leq n}$ la base canonique

de $\mathcal{M}_n(\mathbb{K})$ alors quel que soit $i_0, j_0 \in \{1 \cdots n\}$ on obtient:

$$0 = Tr(AE_{i_0,j_0})$$

$$= \sum_{1 \le i,j \le n} a_{i,j} Tr(E_{i,j} E_{i_0,j_0})$$

$$= \sum_{1 \le i,j \le n} a_{i,j} Tr(\delta_{i_0}^j E_{i,j_0})$$

$$= \sum_{1 \le i,j \le n} a_{i,j} \delta_{i_0}^j \delta_{j_0}^i$$

$$= a_{i_0,j_0}$$

D'où A = 0 ce qui prouve le théorème.

Voyons maintenant deux applications de ce théorème. La première application est une caractérisation de la trace.

Théorème : Soit $f \in \mathcal{M}_n(\mathbb{K})^*$ telle que $\forall X, Y \in \mathcal{M}_n(\mathbb{K}), f(XY) = f(YX)$. Alors, il existe $\lambda \in \mathbb{K}$ tel que $f(X) = \lambda Tr(X)$ pour tout $X \in \mathcal{M}_n(\mathbb{K})$.

Preuve: D'après la première question, comme f est dans le dual de $\mathcal{M}_n(\mathbb{K})$ alors il existe $A \in \mathcal{M}_n(\mathbb{K})$ tel que $f = f_A$. Cela donne,

$$\forall X, Y \in \mathcal{M}_n(\mathbb{K}), \ Tr(AXY) = Tr(AYX).$$

En utilisant les propriétés de la trace, on obtient que Tr(AYX) = Tr(XAY) d'où par linéarité

$$\forall X, Y \in \mathcal{M}_n(\mathbb{K}), Tr((AX - XA)Y) = 0.$$

Cette propriété étant vraie quel que soit $Y \in \mathcal{M}_n(\mathbb{K})$ alors d'après le théorème précédant on en déduit que AX - XA = 0. A commute alors avec toute matrice de $\mathcal{M}_n(\mathbb{K})$ donc A est dans le centre de $\mathcal{M}_n(\mathbb{K})$ et donc $\exists \lambda \in \mathbb{K}$ tel que $A = \lambda I_n$ ce qui donne que $f(X) = Tr(\lambda I_n X) = \lambda Tr(X)$ quel que soit $X \in \mathcal{M}_n(\mathbb{K})$.

La deuxième application quant à elle nous donne une propriété des hyperplans de $\mathcal{M}_n(\mathbb{K})$.

Théorème : Soit $n \geq 2$, alors tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ rencontre $GL_n(\mathbb{K})$.

Preuve: Soit H un hyperplan de $\mathcal{M}_n(\mathbb{K})$, c'est donc le noyau d'une forme linéaire f non nulle. D'après le premier théorème, il existe donc $A \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que $f = f_A$. On cherche alors un $X \in GL_n(\mathbb{K})$ tel que Tr(AX) = 0. Pour ça, on va utiliser le pivot de Gauss. Si on appelle r le rang de A ($r \neq 0$) alors

$$\exists P, Q \in GL_n(\mathbb{K}), \quad A = PJ_rQ \text{ avec } J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Dans ce cas-là, quel que soit la matrice $X \in \mathcal{M}_n(\mathbb{K})$ on a

$$Tr(AX) = Tr(PJ_rQX) = Tr(J_rQXP).$$

Donc, si on trouve un $Y \in GL_n(\mathbb{K})$ tel que $Tr(J_rY) = 0$ alors en posant $X = Q^{-1}YP^{-1} \in GL_n(\mathbb{K})$ on a bien Tr(AX) = 0 et donc $X \in H$. Or, la matrice de permutation

$$Y = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \ddots & & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 1 & 0 \end{pmatrix}$$

convient. En effet, son déterminant est ± 1 donc elle est inversible et $J_r Y$ a sa diagonale nulle donc sa trace aussi ce qui conclue la démonstration.

Annexe : Le centre de $\mathcal{M}_n(\mathbb{K})$ est l'ensemble des homothéties.

Preuve: On pose $A \in \mathcal{M}_n(\mathbb{K})$ tel que

$$\forall X \in \mathcal{M}_n(\mathbb{K}), \quad AX = XA.$$

Alors, pour tout $i, j \in \{1 \cdots n\}$ on obtient:

$$AE_{i,j} = E_{i,j}A$$

$$\Rightarrow \sum_{1 \le k,l \le n} a_{k,l} E_{k,l} E_{i,j} = \sum_{1 \le k,l \le n} a_{k,l} E_{i,j} E_{k,l}$$

$$\Rightarrow \sum_{1 \le k,l \le n} a_{k,l} \delta_l^i E_{k,j} = \sum_{1 \le k,l \le n} a_{k,l} \delta_j^k E_{i,l}$$

$$\Rightarrow \sum_{1 \le k \le n} a_{k,i} E_{k,j} = \sum_{1 \le l \le n} a_{j,l} E_{i,l}$$

Par unicité de la décomposition sous cette forme on obtient donc que $a_{k,i}=0$ si $k\neq i$ et $a_{i,i}=a_{j,j}$ d'où $A=\lambda I_n$ en prenant $\lambda=a_{1,1}$.

Réduction de Frobenius

Arnaud Poinas

1 avril 2015

Référence: Xavier GOURDON - Algèbre, p.290-291.

Leçon: 153, 154, 159.

Énoncé: Soit $f \in \mathcal{L}(E)$. Il existe une suite F_1, F_2, \dots, F_r de s.e.v. de E, tous stables par f, telle que:

- 1. $E = F_1 \oplus F_2 \oplus \cdots \oplus F_r$
- 2. $\forall i \in \{1 \cdots n\}$, la restriction $f_i = f|_{F_i}$ est un endomorphisme cyclique de F_i .
- 3. Si on pose P_i le polynome minimal de f_i , on a $P_{i+1}|P_i$ pour tout $i \in \{1, \dots, r-1\}$

De plus, la suite de polynômes P_1, \dots, P_r ne dépend que de f et non du choix de la décomposition.

Preuve: Existence: On pose Π_f le polynôme minimal de f, k son degré et P_x le polynôme unitaire engendrant l'idéal $\{P \in \mathbb{K}[X] | P(f)(x) = 0\}$. On admettra le fait qu'il existe un $x \in E$ tel que $P_x = \Pi_f$. On prend un tel x et on pose le s.e.v. $F = \{P(f)(x), P \in \mathbb{K}[X]\}$. F est stable par f et comme $deg(P_x) = k$ alors F est de dimension k et admet pour base la famille de vecteurs

$$e_1 = x$$
, $e_2 = f(x)$, ..., $e_k = f^{k-1}(x)$.

On complète cette base en une base (e_1, \dots, e_n) de E et on pose (e_1^*, \dots, e_n^*) la base duale associée. On note

$$G = Vect(\Gamma)^{\circ}$$
 avec $\Gamma = \{e_k^* \circ f^i, i \in \mathbb{N}\}$

En d'autres termes, G est l'ensemble des $x \in E$ tels que la k-ième coordonnée de $f^i(x)$ (dans la base (e_1, \dots, e_n)) soit nulle pour tout i. L'ensemble G est un s.e.v. de E et on montre facilement qu'il est stable par f.

Montrons que $F \oplus G = E$. Pour faire ça, montrons successivement que $F \cap G = \{0\}$ et dim(F) + dim(G) = n.

Soit $y \in F \cap G$. Si $y \neq 0$ alors on peut écrire $y = a_1e_1 + \cdots + a_pe_p$ avec $a_p \neq 0$ et $p \leq k$. En composant par $e_k^* \circ f^{k-p}$ on obtient

$$0 = e_k^*(a_1e_{k-p+1} + \cdots + a_pe_k) = a_p$$

ce qui est absurde donc $F \cap G = \{0\}$.

Comme $G = Vect(\Gamma)^{\circ}$, pour montrer que dim(G) = n - dim(F) = n - k il suffit de prouver que $dim(Vect(\Gamma)) = k$. Pour ça, on considère l'application linéaire

$$\phi: \begin{array}{ccc} \mathcal{L}_f = \{P(f), f \in \mathbb{K}[X]\} & \to & Vect(\Gamma) \\ g & \mapsto & e_k^* \circ g \end{array}.$$

Par définition de $Vect(\Gamma)$, ϕ est surjective. De plus, ϕ est injective. En effet, si $e_k^* \circ g = 0$ avec $g \neq 0$ et $g \in \mathcal{L}_f$ alors on peut écrire $g = a_1 I d_E + \cdots + a_p f^{p-1}$ avec $a \leq k$ et $a_p \neq 0$ et on obtient

$$0 = e_k^* \circ g(f^{k-p}(x)) = e_k^* (a_1 f^{k-p}(x) + \dots + a_p f^{k-1}(x)) = e_k^* (a_1 e_{k-p+1} + \dots + a_p e_k) = a_p$$

ce qui est absurde. ϕ est donc bien un isomorphisme et donc $dim(Vect(\Gamma)) = dim(\mathcal{L}_f) = k$.

On a donc trouvé un sous-espace G stable par f tel que $F \oplus G = E$. On pose P_1 le polynôme minimal de $f|_F$ et P_2 le polynôme minimal de $f|_G$. Comme $F = \{P(f)(x), P \in \mathbb{K}[X]\}$ alors $P_1 = P_x = \Pi_f$ et comme G est stable par f alors P_2 divise $\Pi_f = P_1$. En réappliquant le résonnement précédant à $f|_G$, au bout d'un nombre fini d'étape on obtiendra alors la décomposition voulue.

Unicité: On suppose l'existence de deux suites de sous-espaces F_1, \dots, F_r et G_1, \dots, G_s tous stables par f et vérifiant les trois conditions du théorème. Posons $P_i = \prod_{f|_{G_i}}$ et $Q_j = \prod_{f|_{G_i}}$.

On remarque que $P_1 = \Pi_f = Q_1$. Supposons la liste (P_1, \dots, P_r) différente

de (Q_1, \dots, Q_s) et notons j le premier indice tel que $P_j \neq Q_j$. Un tel indice existe toujours car $\sum_i deg(P_i) = n = \sum_i deg(Q_j)$. Or, si on applique le fait que $P_j(f)(F_k) = 0$ pour $k \geq j$ (qui vient du fait que $P_j|P_k$ pour $k \geq j$) à l'égalité $E = F_1 \oplus \cdots \oplus F_r$ on obtient

$$P_j(f)(E) = P_j(f)(F_1) \oplus \cdots \oplus P_j(f)(F_{j-1}).$$

Par ailleurs, comme les G_j sont stables par f alors en appliquant $P_j(f)$ à l'égalité $E = G_1 \oplus \cdots \oplus G_s$ on obtient

$$P_j(f)(E) = P_j(f)(G_1) \oplus \cdots \oplus P_j(f)(G_{j-1}) \oplus P_j(f)(G_j) \oplus \cdots \oplus P_j(f)(G_s).$$

Or, quel que soit $1 \leq i \leq j-1$ on a $dim(P_j(f)(F_i)) = dim(P_j(f)(G_i))$ (car on peut trouver une base B_i de F_i et une base B'_i de G_i telles que la matrice de $f|_{F_i}$ dans B_i et celle de $f|_{G_i}$ dans B'_i soient égale à la matrice compagnon de P_j). Donc, en prenant les dimensions dans les deux égalités précédentes, on en déduit que

$$0 = dim(P_j(f)(G_j)) = \cdots = dim(P_j(f)(G_s))$$

ce qui prouve que $Q_j|P_j$ car Q_j est le polynôme minimal de $f|_{G_j}$. Par symétrie des rôles, on a aussi $P_j|Q_j$ donc $P_j=Q_j$ ce qui contredit notre assertion de départ. Finalement, on obtient bien r=s et $P_i=Q_i$ pour tout i.

