Complétude de la méthode de résolution.

Référence : Fondements mathématiques de l'informatique.

Jacques STERN

2011-2012

Rappelons la méthode de résolution pour un ensemble $\mathfrak F$ de formules closes :

- 1. on met chaque formule sous forme prénexe;
- 2. on skolemise ces formules;
- 3. on distribue les quantificateurs.

On a maintenant un ensemble de clauses, qu'on note $\{C_1, \ldots, C_r\}$. On renomme les variables de chaque clauses pour que

$$\forall i \neq j, \ Var(C_i) \cap Var(C_j) = \emptyset.$$

On cherche à appliquer la règle de résolution :

Définition 0.1 : règle de résolution

Soient C, C_1, C_2 trois clauses. On dit que C est une résolvante de C_1 et C_2 s'il existe $S_1 \subset C_1$ et $S_2 \subset C_2$ deux ensembles de littéraux tels que :

- S_1 et $\neg S_2$ sont unifiables par σ unificateur principal;
- $C = ((C_1 \backslash S_1) \cup (C_2 \backslash S_2))\sigma.$

Un arbre de résolution est un arbre dont les feuilles sont étiquetées par des clauses de Σ , et chaque nœud a deux fils dont il est une résolvante.

Si la racine de l'arbre est la clause vide \square , alors on dit que l'arbre est un arbre de réfutation.

On se donne un langage L qui a au moins un symbole de constante. On rappelle la définition d'un modèle de Herbrand (Jacques Herbrand, 1908 - 1931) :

Définition 0.2

On appelle modèle de Herbrand \mathfrak{H} une réalisation de L de domaine H qui a les propriétés suivantes :

- H est l'ensemble de tous les termes clos de L;
- chaque constante est interprétée par elle-même;
- l'interprétation d'une fonction f d'arité n est la fonction $t_1, \ldots, t_n \mapsto f(t_1, \ldots, t_n)$, où les t_i sont des termes ;
- à chaque formule atomique close $R(t_1, \ldots, t_n)$ on associe une variable de Herbrand, $p[R(t_1, \ldots, t_n)]$.

On associe alors à la distribution de vérité σ le modèle de Herbrand $\mathfrak{H}(\sigma)$ en interprétant R par

$$R^{\mathfrak{H}(\sigma)} = \{(t_1, \dots, t_n) \mid \sigma(p[R(t_1, \dots, t_n)]) = 1\}.$$

Définition 0.3

À toute formule du calcul propositionnel F sur les variables de Herbrand, on associe une formule close sans

quantificateur $\Phi(F)$ définie par induction, en partant de

$$\Phi(p[R(t_1,\ldots,t_n)]) = R(t_1,\ldots,t_n).$$

On a alors clairement $Val(F, \sigma) = Val(\Phi(F), \mathfrak{A}(\sigma))$.

On définit maintenant une particularisation :

Définition 0.4

Soit F une formule close. On appelle particularisation de F toute formule qui s'écrit $F(x_1/t_1, \ldots, x_n/t_n)$ où les t_i sont des termes clos.

On a alors le:

Théorème 0.5 : de Herbrand

Soit Σ un ensemble de formules closes universelles. Alors l'une ou l'autre des propositions est vraie :

- il existe un modèle de Herbrand qui satisfait Σ ;
- il existe un ensemble fini de particularisations de formules de Σ qui est contradictoire.

 $D\acute{e}monstration$. On remplace chaque formule de Σ par l'ensemble de ses particularisations. On obtient ainsi un ensemble Σ' de formules closes. Par Φ , cet ensemble provient d'un ensemble de formules du calcul propositionnel :

$$\Sigma' = \{ \Phi(F) \mid F \in \Sigma_0 \}.$$

S'il existe σ qui satisfait Σ_0 , alors le modèle de Herbrand $\mathfrak{A}(\sigma)$ satisfait toutes les formules de Σ' et donc de Σ .

Si Σ_0 est contradictoire, alors par compacité du calcul propositionnel, on a un sous-ensemble fini de Σ_0 qui est contradictoire, et par Φ , on a un sous-ensemble fini de Σ' qui est contradictoire.

Théorème 0.6 : de complétude de la méthode de résolution

Soit Σ un ensemble de clauses contradictoire. Alors il existe un arbre de résolution qui réfute Σ .

 $D\acute{e}monstration$. Notons Σ' l'ensemble des particularisations des clauses de Σ .

Par le théorème de Herbrand, Σ' est contradictoire. Via l'application Φ , on a un ensemble de formules propositionnelles contradictoire.

On a donc un arbre de réfutation au sens propositionnel qui réfute Σ' . On va remplacer chaque nœud c de l'arbre par une clause C dont elle est une particularisation. Pour les feuilles, la construction est évidente. Pour les nœuds internes, on utilise le

Lemme 0.7 : de relèvement

Soient C_1 et C_2 des clauses au sens du calcul des prédicats, et soient c_1 et c_2 des clauses propsitionnelles qui en sont respectivement des particularisations. Alors pour toute résolvante c de c_1 et c_2 , il existe une résolvante C de C_1 et C_2 donc c est une particularisation.

Démonstration. Quitte à renommer les variables, on peut supposer que les variables x_1, \ldots, x_n de C_1 et y_1, \ldots, y_p de C_2 sont distinctes.

 c_1 et c_2 étant des particularisations, il existe des termes $t_1, \ldots, t_n, t'_1, \ldots, t'_p$ tels que c_1 et c_2 proviennent de C_1 et C_2 par la substitution

$$\tau = (x_1/t_1, \dots, y_p/t_p').$$

Soit u le littéral qui intervient dans la coupure de c_1 et c_2 . On définit S_1 (resp. S_2) l'ensemble L des littéraux de C_1 (resp. C_2) tels que $L\tau$ conduise à u (resp. \overline{u}).

Alors $S_1 \cup \neg S_2$ est unifiable par τ . On choisit un unificateur principal σ : on a $\tau = \sigma \theta$.

c est obtenue par l'action de τ sur l'ensemble de littéraux

$$(C_1 \backslash S_1) \cup (C_2 \backslash S_2),$$

c'est-à-dire par l'action de θ sur la résolvante de C_1 et C_2

$$C = ((C_1 \backslash S_1) \cup (C_2 \backslash S_2))\sigma.$$

Comme θ élimine toutes les variables de C, c est la particularisation de C obtenue en remplaçant chaque variable x par $x\theta$. \diamondsuit