Théorème de Rice

Référence : Introduction à la calculabilité. Pierre Wolper

2011-2012

On définit dans la suite deux langages :

Définition 1

On note (w_i) et (M_j) des énumérations des mots et des machines de Turing, et on pose

 $-L_0 := \{ w \mid w = w_i \text{ et } M_i \text{ n'accepte pas } w_i \}.$

 $-LU := \{ \langle M, \underline{w} \rangle \mid M \text{ accepte } w \}$

On note $\overline{L_0}$ et \overline{LU} les complémentaires.

Théorème 2

Tout propriété non triviale des langages récursivement énumérables est indécidable.

 $D\acute{e}monstration$. On va montrer que les langages L_0 , $\overline{L_0}$ et LU sont indécidables, puis, pour une propriété non triviale sur les langages récursivement énumérables P, on montrera que P est indécidable par une réduction à partir de LU.

Lemme 3

 L_0 est indécidable.

 $D\acute{e}monstration$. Supposons L_0 décidable : il existe une machine de Turing qui l'accepte, soit M_k . On a alors :

 \Diamond

 \Diamond

- si M_k accepte w_k , alors $w_k \notin L_0$ par définition de $L_0 \to \text{contradiction}$.
- si M_k n'accepte pas w_k , alors $w_k \in L_0 \to \text{contradiction}$.

Lemme 4

 $\overline{L_0}$ est indécidable.

 $D\acute{e}monstration$. Si $\overline{L_0}$ était décidable, alors L_0 aussi.

Lemme 5

LU est indécidable.

Démonstration. On fait une réduction à partir de $\overline{L_0}$.

Supposons donc LU décidable. Considérons l'algorithme suivant, prenant en entrée un mot w:

- on détermine i tel que $w = w_i$;
- on détermine M_i ;
- on applique la procédure de décision pour LU à $< M_i, w_i > :$ si le résultat est positif, on accepte w, sinon on le rejette.

Alors cet algorithme décide $\overline{L_0} \to {\rm contradiction}.$

 \Diamond

Soit maintenant P une propriété non triviale sur les langages récursivement énumérables.

On peut supposer que le langage vide ne vérifie pas P (sinon, on considère \overline{P}).

Comme P est non triviale, il existe une machine de Turing M_p qui accepte un langage vérifiant P.

Pour une instance $\langle M, w \rangle$ de LU, on construit une machine M' qui a le comportement suivant :

- -M' simule l'exécution de M sur w, sans tenir compte du mot d'entrée x;
- si M accepte w, elle simule M_p sur x;
- si M n'accepte pas w (rejet ou exécution infinie), M' n'accepte aucun mot.

On a alors : $\mathcal{L}(M')$ vérifie P si et seulement si $< M, w > \in LU$.