Théorème de Hadamar-Lévy

Références

- Zuily-Queffélec p. 400

Théorème 1 (Hadamard- $L\acute{e}vy$)

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ de classe \mathcal{C}^1 . Il y a équivalence entre :

- (i) f est un C^1 -difféomorphisme de \mathbb{R}^n sur \mathbb{R}^n
- (ii) f est propre (image réciproque de tout compact est un compact) et Df est inversible en tout point.

Remarque : La propriété propre : $\forall K$ compact de \mathbb{R}^n , $f^{-1}(K)$ est un compact ; ne décrit pas une propriété topologique pure contrairement à l'intuition que l'on peut en avoir, mais au contraire sert à garantir la bijectivité de f.

La démonstration complète du résultat est longue et difficile, le développement nécessite de partir de l'hypothèse $f \in \mathcal{C}^2$.

Je n'ai pas de référence pour la preuve du cas C^1 qui ne manquera pas d'être posée en question par le jury.

Preuve: Le sens direct $(i) \Rightarrow (ii)$ est trivial.

Réciproquement, il suffit de montrer que f est bijective. En effet comme le théorème d'inversion locale nous garanti que f est un \mathcal{C}^1 difféomorphisme en tout point. Alors comme f^{-1} existe globalement, elle est de classe \mathcal{C}^1 d'où le résultat.

f surjective: On montre que $X = f(\mathbb{R}^n)$ est ouvert, fermé et non-vide.

- Ouvert : Soit $y_0 = f(x_0)$ un élément de l'image. Par théorème d'inversion locale f réalise un \mathcal{C}^1 -difféo de V voisinage de x_0 sur f(V) voisinage de y_0 dans \mathbb{R}^n ; par suite $W \subset X$ et donc X est ouvert.
- Fermé : Soit $(y_n)_n$ une suite de X qui converge vers y dans \mathbb{R}^n . Considérons $K = \{y_n\}_n \cup \{y\}$; c'est un compact. Soit alors une suite x_n telle que $f(x_n) = y_n$ pour tout n. Alors la suite $(x_n)_n$ est dans le compact $f^{-1}(K)$, d'où $x_{\varphi(n)} \to x$ et par continuité $y = f(x) \in X$. Donc X est fermé.

f est injective On se fixe $x_0 \in \mathbb{R}^n$, le but est de montrer que $\{x \in \mathbb{R}^n \mid f(x) = f(x_0)\} = S$ est de cardinal 1.

On pose $g: x \mapsto f(x) - f(x_0)$.

– Les fibres au dessus de f sont finies : Comme $S = f^{-1}(\{f(x_0)\})$, alors S est compact. Supposons qu'il y ait une infinité d'éléments dans S, alors cet ensemble possède un point d'accumulation x. De plus, par théorème d'inversion locale, g est un \mathcal{C}^1 -difféo au voisinnage V de x en particulier g est inversible sur V. Or pour $x \in V \cap S \setminus \{x_0\}$, on a $g(x) = g(x_0) = 0$ ce qui contredit l'injectivité. Donc S est fini.

On pose dans la suite $S = \{p_i\}_{1 \leq i \leq N}$ et on considère la fonction $F : x \mapsto Dg(x)^{-1}g(x)$ de classe \mathcal{C}^1 sur \mathbb{R}^n .

On considère le problème de Cauchy suivant : $\dot{x} + F(x) = 0$ avec condition initiale $x(0) = x_0$. Et on notera $(x_t)_{0 \le t \le T^*}$ la solution maximale et de même $(x_t^y)_t$ la solution avec condition initiale $x_0^y = y$.

- $T^* = +\infty$. En effet $\frac{\partial g(x_t^y)}{\partial t} = Dg(x_t^y)(-F(x_t^y)) = -g(x_t^y)$ donc $|g(x_t^y)| = |\exp(-t)g(y)| \le |g(y)|$. D'où la trajectoire de x^y est contenue dans le compact $g^{-1}(\overline{B}(0,g(y)))$ et donc bornée. D'où $T^* = +\infty$, la solution $(x_t^y)_t$ est globale.
- On montre que $\forall i, p_i$ est assymptotiquement stable. En effet on a déjà $F(p_i) = Dg(p_i)^{-1}0 = 0$. Et de plus, g est un difféomorphisme de $B(p_i, \delta)$ sur V voisinage de 0 dans \mathbb{R}^n . Soit alors $\varepsilon > 0$ tel que $B(0, \varepsilon) \subset V$.
- On pose $W_i = \{q \in \mathbb{R}^n \mid x_t^q \to p_i \text{ quand } t \to \infty\}$. Montrons que $\mathbb{R}^n = \bigcup_i W_i$. On a vu que pour tout $q \in \mathbb{R}^n$, $g(x_t^q) = \exp(-t)g(q) \to 0$. Or la famille $(x_t^q)_t$ etant dans un compact, il existe $l \in \mathbb{R}^n$ valeur d'adhérence; et par continuité de g, g(l) = 0 donc $\exists i \leq N$ tel que $l = p_i$. Enfin à partir d'un certain t_0 les $(x_t^q)_t$ sont dans $B(p_i, \delta)$ donc $x_t^q \to p_i$ ie $q \in W_i$.
- Pour tout $i \in \{1, \dots, N\}$, W_i est ouvert (non-vide). Soit $q \in W_i$, alors $\exists T \geq 0$ tel que $|x_T^q p_i| < \delta/2$. Soit maintenant $r \in \mathbb{R}^n$, il existe $\varepsilon > 0$ tel que si $|r q| < \varepsilon$ alors $|x_T^r x_T^q| < \delta/2$ par continuité du flot et donc $|x_t^r p_i| \to 0$. Ainsi $B(q, \varepsilon) \subset W_i$. Donc W_i est ouvert.
- En conclusion, on a une partition de \mathbb{R}^n (car $W_i \cap W_j = \emptyset$) en ouverts non-vide. Donc par connexité de \mathbb{R}^n nécessairement N = 1 d'où le résultat.

Autour du développement :

Remarque: L'hypothèse $f \in C^2$ $(g \in C^2)$ est un peu forte. On a besoin pour cette preuve d'appliquer Cauchy-Lipschitz (local) à $F: x \mapsto Dg(x)^{-1}g(x)$. Donc g' localement lipschitzienne en tout point est une hypothèse suffisante.

Cas général : L'énoncé plus fort est le suivant :

Théorème 2

Soit X une variété différentielle **cpa** et Y une variété différentielle **cpa** et **simplement connexe** et $f: X \to Y$ un morphisme de variétés différentielles (\mathcal{C}^1) .

Si f est propre et est un difféomorphisme local, alors c'est un difféomorphime global de X sur Y.

Remarque: (en fait cpa peut être remplacé par connexe, mais là faut pas déconner...)

Idée de la preuve :

- (1) Difféo local \Rightarrow f ouverte
- (2) Continue et propre ⇒ f fermée
 - $-Y \text{ connexe}+(1)+(2) \Rightarrow f \text{ surjective}$
 - -(X, f) est un revêtement.
 - On montre comme dans la démo précédente que les fibres sont finies grâce à l'hypothèse de propreté + difféo local. Puis on doit établir une bijection entre les fibres au dessus de $f(x_0)$ et $f(x_1)$. Pour cela on trace un chemin de x_0 à x_1 , on montre qu'on peut le recouvrir de boules sur lesquelles f est un difféomophisme et tels que dans X les différentes boules antécédentes s'intersectent. Ce qui nous permet de relever le chemin en un chemin de S_0 à S_1 partant de $x \in S_0$. D'où l'existence et l'unicité de l'image $x' \in S_1$ et donc la bijection entre les fibres.
 - Y simplement connexe \Rightarrow (X, f) est un revêtement trivialisable.

– Et donc comme X est connexe, et $X \simeq Y \times F$ ou F est discret, nécessairement, $F = \{\star\}$ donc f est injective d'où f est un difféo.

Toute la difficulté est alors contenue dans le lemme :

Lemme 1

Soit $f:X\to Y$ où X,Y sont des variétés différentielles de classe \mathcal{C}^1 et supposons Y simplement connexe, alors :

f est trivialisable ($\exists F$ discret tel que Y soit homéomorphe à $X \times F$)

Prenons un lacet γ partant de $f(x_0)$, alors il peut par la construction donnée ci-dessus se relever en un chemin de x_0 à x'_0 dans X.

Or il existe une équivalence d'homotopie $h:[0,1]\to \{\gamma:f(x_0)\leadsto f(x_0)\}$ tel que $h(0)=\gamma,$ $h(1)=\mathbf{1}_{f(x_0)}.$

Par suite on peut relever h en une équivalence d'homotopie de $f^{-1}\gamma$ vers id_{x_0} . Et donc nécessairement $x_0' = x_0$.

Donc on considère l'ensemble des points atteignables par chemin relevés en x_0 qui nous donne un sous espace X_0 de X homéomorphe à Y. Il existe un tel espace pour chaque élément de S donc $X \simeq Y \times S$.