Formes Linéaires et Hyperplans en dimension finie. Exemples et applications.

Stéphane RIVAUD

7 novembre 2012

On notera \mathbb{K} un corps, et E un espace vectoriel de dimension finie n.

1 Définitions et première propriétés

Définition 1.1. Une forme linéaire est une application linéaire de E dans \mathbb{K} . On appelle dual de E l'ensemble des formes linéaires sur E, que l'on note E^* .

Exemple:

- Dans $L^1(0,1)$, l'application $f \mapsto \int_0^1 f(t)dt$ est une forme linéaire.
- Soit $f: \mathbb{R}^n \to \mathbb{R}$ différentiable en a, alors df_a est une forme linéaire.

Notation : Pour $x \in E$, et $\varphi \in E^*$, on note $\langle \varphi, x \rangle := \varphi(x)$. On appelle $\langle ., . \rangle$ le crochet de dualité.

Définition 1.2. Un hyperplan H de E est sous-espace vectoriel de dimension n-1.

Proposition 1.1.

- 1. Soit $\varphi \in E^*$ non nulle, alors $\ker(\varphi)$ est un hyperplan de E.
- 2. Soit H un hyperplan de E, alors il existe $\varphi \in E^*$ telle que $H = \ker(\varphi)$. De plus pour tout $\psi \in E^*$:

$$Ker(\psi) = H \iff \exists \lambda \in \mathbb{K} \setminus \{0\}, \ \psi = \lambda \varphi$$

Corollaire 1.1 (Equation d'un hyperplan).

1. Soit $\mathcal{B} = (e_1, ..., e_n)$ une base de E, et $a_1, ..., a_n \in \mathbb{K}$ non tous nuls, alors l'ensemble des x appartenant à E vérifiant :

$$\sum_{i=1}^{n} a_i x_i = 0 \quad (*)$$

relativement à la base \mathcal{B} est un hyperplan.

2. Tout hyperplan de E admet une équation de la forme (*) qui est unique à constante multiplicative non nulle près.

2 Dualité

Définition 2.1 (Base duale). Soit $\mathcal{B} = (e_1, ..., e_n)$ une base de E. On définie la famille de forme linéaire $\mathcal{B}^*(e_1^*, ..., e_n^*)$ par :

$$\langle e_i^*, e_j \rangle = \delta_{ij}$$

La famille \mathcal{B}^* forme une base de E appelée base duale de \mathcal{B} . On dit que \mathcal{B} est la base antéduale de \mathcal{B}^* .

Remarque: Soit $(e_1^*, ..., e_n^*)$ une base de E^* , alors il y a bien une unique base antéduale. En effet, si $(e_1, ..., e_n)$ et $(e'_1, ..., e'_n)$ sont deux bases antéduale, on a $\langle e_i^*, e_j - e'_j \rangle = 0$ pour tout i, j. Donc par linéarité, pour tout $j, e_j - e'_j$ annule toute forme linéaire sur E: c'est donc le vecteur nul. Ce qui permet d'écrire la proposition suivante.

Proposition 2.1. Le choix d'une base \mathcal{B} permet de définir un isomorphisme entre E et E^* :

$$x = \sum_{i=1}^{n} x_i e_i \mapsto \sum_{i=1}^{n} x_i e_i^*$$

Remarque : Dans le cas euclidien, on retrouve cet isomorphisme avec le théorème de représentation de Riesz.

Définition 2.2 (Bidual). On appelle bidual de E l'ensemble des formes linéaires sur E^* , que l'on note E^{**} .

Remarque : Soit $x \in E$, alors l'application $\varphi \mapsto \varphi(x)$ est une forme linéaire sur E^* .

Théorème 2.1. L'application

$$J: \left\{ \begin{array}{ccc} E & \longrightarrow & E^{**} \\ x & \longmapsto & (\varphi \mapsto \varphi(x)) \end{array} \right.$$

est un isomorphisme.

Remarque:

- J ne dépend pas du choix d'une base. E s'identifie donc canoniquement avec E^* .
- En dimension infinie, J est toujours injectif.

3 Orthogonalité

3.1 Par dualité

Définition 3.1. un vecteur $x \in E$ et une forme linéaire $\varphi \in E^*$ sont dit orthogonaux si : $\langle \varphi, x \rangle = 0$

Définition 3.2. Soit $F \subset E$ une partie de E. On appelle orthogonal de F l'ensemble $F^{\perp} = \{ \varphi \in E^* \mid \forall x \in F, \ \varphi(x) = 0 \}$

Remarque : Attention, $\underline{\underline{F^{\perp}} \subset \underline{E^*}}$

Proposition 3.1. 1. $A_1 \subset A_2 \subset E \Longrightarrow A_2^{\perp} \subset A_1^{\perp} \subset E^*$

- 2. $F^{\perp} = (Vect(F))^{\perp}$ et F^{\perp} est un sev de E.
- 3. Si F est un sev de E, alors $\dim(F) + \dim(F^{\perp}) = \dim(E)$ de plus, $(F^{\perp})^{\perp}$

Remarque : Cette dernière égalité se fait via l'isomorphisme J.

1. Soit $(\varphi_i)_{1 \leqslant i \leqslant p}$ une famille de E^* de rang r, alors Corollaire 3.1.

$$\bigcap_{i=1}^{p} \ker(\varphi_i)$$

est un sev de dimension n-r.

- 2. Réciproquement, si F et un sev de E de dimension q, alors il existe n-q hyperplans $H_i = \ker(\varphi_i)$ tels que:
 - $(\varphi_i)_{1 \leqslant i \leqslant p}$ est une famille libre. $F = \bigcap_{i=1}^{n-q} Ker(\varphi_i)$

Interprétation : le sev F peut être vu comme l'ensemble des solutions d'un système de n-q équations à n inconnues, ou comme l'intersection de n-q hyperplans.

Application: Interpolation de Lagrange

Soit $E = \mathbb{K}_n[X]$ et $a_0, ..., a_n \in \mathbb{K}$ distincts. On définit $(\varphi_i)_{0 \le i \le n}$ par :

$$\forall P \in \mathbb{K}_n[X]\langle \varphi, P \rangle = P(a_i)$$

La famille $(\varphi_i)_{1 \leq i \leq p}$ est une base de E^* dont la base antéduale est formée des polynomes de Lagrange:

$$L_i = \prod_{j=1, j \neq i}^n \frac{X - a_j}{a_i - a_j}$$

On a donc pour tout $P \in \mathbb{K}_n[X]$:

$$P(X) = \sum_{i=1}^{n} P(a_i)L_i(X)$$

3.2 Le cas euclidien

On munie E du produit scalaire usuel que l'on note $\langle ., . \rangle$.

Théorème 3.1 (de représentation de Riesz). Soit $\varphi \in E^*$, alors il existe un unique $x \in E$ tel que :

$$\forall y \in E, \ \varphi(y) = \langle x, y \rangle$$

Remarque : Grâce à ce théorème on peut faire coïncider la notion d'orthogonalité euclidienne et celle introduite précédemment via le dual. On dit que x et y sont orthogonaux si y est orthogonal à la forme linéaire $\langle x, . \rangle$. De plus on comprend d'où vient la notation du crochet de dualité.

Définition 3.3. Soit F un sous-espace vectoriel de E et $\sigma \in \mathcal{L}(E)$ tels que $\sigma_{|F} = \operatorname{Id} \ \operatorname{et} \ \sigma_{|F^{\perp}} = -\operatorname{Id}.$

- $si \dim(F) = n 1$ alors on dit que σ est une réflexion par rapport à F.
- $si \dim(F) = n 2$ alors on dit que σ est une réflexion par rapport à F.
- dans le cas général, on dit que σ est une symétrie orthogonale par rapport à F.

Théorème 3.2 (Cartan-Dieudonné).

- 1. Les réflexions engendrent O(E): si $\dim(E) \ge 2$, toute application de O(E), s'écrit comme un produit de moins de n réflexions.
- 2. Les retournements engendrent SO(E): si $\dim(E) \ge 3$, toute application de SO(E) s'écrit comme un produit de moins de n retournement.

Démonstration. Développement.

4 Transposée d'une application

Définition 4.1. Soit $f \in \mathcal{L}(E, F)$, on définit ${}^t f \in \mathcal{L}(E^*, F^*)$ par :

$$\forall \varphi \in F^*, \ ^tf(\varphi) = \varphi \circ f$$

Proposition 4.1. Soit $f \in \mathcal{F}(E, F)$, alors :

$$\forall x \in E, \ \forall \varphi \in F^*, \quad \langle {}^t f(\varphi), x \rangle = \langle \varphi, f(x) \rangle$$

Remarque: Soit $(e_1, ..., e_q)$ une base de E, $(e_1^*, ..., e_q^*)$ sa base duale, $(f_1, ..., f_p)$ une base de F et $(f_1^*, ..., f_p^*)$ sa base duale. Si on applique cette proposition en prenant $x = e_j$ et $\varphi = f_i^*$, on obtient que la matrice de l'application f dans les bases $(f_1^*, ..., f_p^*)$ et $(e_1^*, ..., e_p^*)$ est la transposée de la matrice de f dans les bases $(e_1, ..., e_q)$ et $(f_1, ..., f_p)$.

Corollaire 4.1. 1. L'application qui à f associe ^t f est linéaire.

- 2. On $a^{t}(^{t}f) = f$.
- 3. Si $f \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ alors ${}^{t}(v \circ f) = {}^{t}f \circ {}^{t}v$.

Proposition 4.2. On a $\operatorname{Im}({}^t u) = \ker(u)^{\perp}$ et $\ker({}^t u) = \operatorname{Im}(u)^{\perp}$.

Proposition 4.3. Un sev F est stable pas u si et seulement si F^{\perp} est stable par tu .

Corollaire 4.2. Si $u \in \mathcal{L}(E)$ et si F est un sev de E u-cyclique, i.e. $\exists x \in F$, $F = \{P(u)(x); P \in \mathcal{K}_n[X]\}$ alors F possède un supplémentaire stable par u.

Application : existence des invariants de similitudes d'un endomorphisme

5 Convexité et hyperplan

5.1 Résultats de séparation

Définition 5.1. Soit A une partie de E. On dit que A est convexe si :

$$\forall x, y \in A, \ \forall t \in]0,1[,\ tx + (1-t)y \in A$$

Théorème 5.1 (Hahn-Banach). Soit A un ouvert convexe non vide et F un sev de E tel que $A \cap F = \emptyset$. Alors il existe un hyperplan H contenant F vérifiant $A \cap H = \emptyset$.

Remarque : Les hyperplans sont les seuls sous-espaces permettant de séparer un espace vectoriel en deux composantes connexes C_1 et C_2 . On appelle ces deux composantes connexes les demi-espaces délimités par H. Les demi-espaces ouverts (resp. fermés) sont $C_1 \setminus \{H\}$ et $C_2 \setminus \{H\}$ (resp $C_1 \cup \{H\}$ et $C_2 \cup \{H\}$.

Définition 5.2. Soient A, B des parties de E et H un hyperplan.

- 1. On dit que H sépare A et B si A est contenu dans l'un et B dans l'autre des demi-espaces fermés délimités par H.
- 2. On dit que H sépare A et B strictement si A est contenu dans l'un et B dans l'autre des demi-espaces ouverts délimités par H.

Théorème 5.2. Soient A, B des ouverts convexes non vides disjoints.

- Si A est ouvert, alors il existe un hyperplan H qui sépare A et B.
- Si A et B sont ouverts, alors il existe un hyperplan H qui sépare A et B strictement.
- Si A est compact et B est fermé, alors il existe un hyperplan H qui sépare A et B strictement.
- Si A et B sont fermés, alors il existe un hyperplan H qui sépare A et B strictement.

5.2 Hyperplan d'appui

Dans cette partie, nous mettons en lumière quelques résultats sur les convexes, et en particulier leur frontière, grâce à la notion d'hyperplan d'appui.

Définition 5.3. Soit $A \subset E$ et $M \in A$. On appelle hyperplan d'appui de A en M un hyperplan qui sépare A et M.

Proposition 5.1. Si A est un convexe fermé, tout point de sa frontière appartient à au moins un hyperplan d'appui.

Théorème 5.3. Soit A un fermé d'intérieur non vide. Si A possède un hyperplan d'appui en tout point de sa frontière, alors A est convexe.

Définition 5.4. Soit A un convexe. Un point $M \in A$ est dit extrémal si :

$$\forall P, Q \in A, \ \forall t \in]0,1[, \quad A = tP + (1-t)Q \Rightarrow A = P \ ou \ A = Q$$

On note $\mathcal{E}(A)$ l'ensemble des points extrémaux de A.

Théorème 5.4 (Krein-Milmann). Soit A un convexe compact non vide, alors A est l'enveloppe convexe de ses points extrémaux :

$$A = \operatorname{conv}(\mathcal{E}(A))$$

Bibliographie:

- Jacques Celier : Algèbre linéraire, des bases aux applications
- Henry Roudier : Algèbre Linéaire (explique bien, pas mal d'exos pouvant servir de développement)
- Rémi Goblot : Algèbre Linéaire (quelques exemples, mais c'est tout...)
- MER : Le livre jaune pour le théorème de Cartan-Dieudonné