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Abstract

The main goal of this study was to introduce all the mathematical
tools starting from the notion of manifold to the Einstein field equation
from the General Relativity. Thus a generalization of tools such as
derivatives, curves and distance had to be done in order to highlights
invariants such as curvature that can be helpful to classify spaces.
The study will explore some properties along the way for a better
understanding of the different layers of mathematical objects.

1 Smooth Manifold

Definition 1.1 (topological n-manifold). If E is an Hausdorff space, second
countable and locally Euclidean of dimension n, then E is a topological n-
manifold.

Definition 1.2 (Coordinate Chart). Let U be an open subset of a manifold
M, ϕ : U → Ũ ⊂ Rn where ϕ is an homeomorphism. (U, ϕ) is called the
Coordinate chart.

These objects will be used in the case of a locally Euclidean spaces, thus
by definition every point has a neighborhood homeomorphic to an open subset
of R

Idea behind smooth n-manifold : ϕ : U → Ũ and f : U → R such that
f ◦ ϕ−1 : Ũ ⊂ Rn → R could be smooth in the usual sense. But in order to
be independent of the choice of the coordinate chart we say that (U,ϕ) and
(V,ψ) are smoothly compatible if either : U ∩ V = ∅

or the transition map from ϕ to ψ : ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is
a diffeomorphism.

Definition 1.3. An atlas is a collection of charts whose domain covers M

Definition 1.4. A smooth atlas for a topological manifold M is an atlas for
M such that each transition map is a smooth map, and two smooth atlases
for M are smoothly equivalent provided their union is again a smooth atlas
for M.
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Definition 1.5. (A,M) is a smooth structure if A is a smooth maximal atlas
and M a topological manifold. Where the smooth maximal atlas is found by
taking the union of all atlases belonging to a smooth structure.

Thus a smooth manifold is a topological manifold M together with a
smooth structure on M.

Thus we can define a smooth map F : M → N as
for every p in M, be (U,ϕ) a smooth chart containing p and be (V,ψ) a
smooth chart containing F (p), ψ ◦ F ◦ ϕ−1 is smooth from ϕ(U) to ψ(V ),
both subset of Rn.

2 Tangent Space

We need to define the tangent space without an ambiant Euclidean space.

Definition 2.1. Let M be a smooth manifold, p a point of M, X a linear
map : C∞(M) → R.

X is called a derivative at p if ∀f, g ∈ C∞(M), X(fg) = f(p)Xg +
g(p)Xf .
The set of all derivative of C∞(M) at p is a vector space called the tangent
space to M at p, denoted TpM and an element of TpM is called a tangent
vector.

2.1 Constructions in C∞(Rn)

Lemma 2.2. Suppose a ∈ Rn and X ∈ Ta(Rn)

1. if f is a constant function, then Xf = 0

2. if f(a) = g(a) = 0, then X(fg) = 0

Proof.
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1. Let X ∈ Ta(Rn), f ∈ C∞(Rn) such that ∀u ∈ Va(Rn), f(u) = 1.
Thus X(f) = X(ff) = 2f(a)Xf = 2Xf ⇒ Xf = 0. Then if g(u) =
c ⇒ g = cf so X(g) = cX(f) = 0.

2. f(a) = g(a) = 0 ⇒ X(fg) = 0 by the product rule.

Proposition 2.3. For any a ∈ Rn the map va )→ Dv|a is an isomorphism
from Rn to Ta(Rn).

Proof. v = viei|a in component near a. So if we take f as the j-th coordinate
function xj : Rn → R we have

Dv|af = vi
∂f

∂xi
(a) = vi

∂

∂xi
(xj)|x=a = vj

but Dv|af = 0. Thus ∀j, vj = 0 so v = 0 because vj are its coordinates. To
prove the surjectivity : Let X be derivation at a, we define vi = X(xi) and
we will show that X = Dv|a where v = viei.

Taylor formula at 1st order gives :

f(x)− f(a) =

n!

i=1

(xi − ai)
∂f

∂xi
(a) +

n!

i=1

gi(x)(x
i − ai)

with gi(x) vanishing at x = a. Thus if we apply X and use the Lemma 2.2

Xf = X(f(a)) +

n!

i=1

∂f

∂xi
(a)X(xi) = vi

∂f

∂xi
(a)

which is in fact just Dv|af .

Proposition 2.4. For any a ∈ Rn, the n derivatives { ∂
∂x1 |a, ..., ∂

∂xn |a}, de-
fined by ∂

∂xi |af = ∂f
∂x1

(a), form a basis for Ta(Rn), which therefore has a
dimension of n.

Proof. ∂
∂xi |a = Dei |a so because (ei) is a basis for Rn, Proposition 2.3 gives

that ( ∂
∂xi |a) is a basis for Ta(Rn).
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2.2 Constructions in C∞(M) with M manifold.

Lemma 2.2 was proven without using Rn

Definition 2.5. Let ϕ be a smooth map between smooth manifolds M and
N. We can define the pushforward of X by ϕ as ∀f ∈ C∞(M), ∀X ∈ TpM,

ϕ∗X(f) = X(f ◦ ϕ)

. Watch out that it is dependent of p ∈ M.
Where C∞(M) represent the set of all smooth real-valued functions and

ϕ∗ : TxM → Tϕ(x)M such that it can be identified with dϕx, dϕx(X)(f) =
X(f ◦ ϕ), knowing that any tangent vector X ∈ TpM can be viewed as a
derivation acting on smooth real-valued functions C∞(M).
This will be highlighted when we will introduce the coordinate notation.

Proof. ϕ∗X is clearly linear and is a derivative at ϕ(p) because ∀f, g ∈ C∞(M),

ϕ∗X(fg) = X(fg◦ϕ) = X((f ◦ϕ)(g◦ϕ)) = f ◦ϕ(p)X(g◦ϕ)+g◦ϕ(p)X(f ◦ϕ)

= f(ϕ(p))ϕ∗X(g) + g(ϕ(p))ϕ∗X(f).

Lemma 2.6. Let F : M → N and G : N → P be smooth maps and let
p ∈ M .

1. F∗ : TpM → TF (p)N is linear

2. (G ◦ F )∗ = G∗ ◦ F∗ : TpM → TG◦F (p)P

3. (IdM )∗ = IdTpM : TpM → TpM

4. If F is a diffeomorphism, then F∗ : TpM → TF (p)N is an isomorphism

Proposition 2.7. Suppose M is a smooth manifold, p ∈ M and X ∈ TpM .
If f and g are smooth functions on M that agree on some neighborhood of p,
then Xf = Xg.

Proof. Let define h = f − g and ψ a smooth bump function, that is equal
to 1 whenever h is non zero and zero on the neighborhood.

ψ(p) = h(p) = 0 ⇒ X(ψh) = 0.

because of the generalization of Lemma 2.2. But by construction ψh = h so
Xf = Xg.
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Using this proposition we can see that the tangent space for a submani-
fold is equal to the tangent space to the whole manifold.

Proposition 2.8. Let M be a smooth manifold, let U ⊂ M be an open
submanifold and let ι : U → M be the inclusion map. For any p ∈ U ,
ι∗ : TpU → TpM is an isomorphism.

Proof. First proof : we can use the definition of tangent space by curves,
because every curves of M going through p can be restricted as a curve in U
and thus being in the same equivalence classes than the curves of U. Thus
the set of curves in U describes the tangent space.

Second proof : Let f be a map in U and B a neighborhood of p such that
B ⊂ U . We define f ∈ C∞(M), f |B = f by being f with a bump function
with U\B the smooth transition.
Let X ∈ TpU verify ι∗X = 0.

Thus because they agree on some neighborhood, Proposition 2.7 gives
Xf = X(f |U ) = X(f ◦ ι) = ι∗Xf = 0. Because this hold for every f ∈
C∞(U), it follows that X = 0 and ι∗ is injective.

Suppose Y ∈ TpM arbitrary. Let X : C∞(U) → R such that Xf = Y f
where f is any function on all M that agree with f on B. Xf is independent
of the choice of f , because of Proposition 2.7, so it is well defined.
We can check that X ∈ TpU . For any g ∈ C∞(M), (ι∗X)g = X(g ◦ ι) =
Y (g ◦ ι) = Y g, Thus ι∗ is surjective.

Remarks :
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Th tangent space are distincts (line and plane) because the great circle is
not an open submanifold of the sphere.

Proposition 2.9.

Let φ : U → V be a smooth map from an open subset U of Rm to an
open subset V of Rn. For any point x in U, the Jacobian of φ at x (with
respect to the standard coordinates) is the matrix representation of the total
derivative of φ at x, which is a linear map dϕx : Rm → Rn.
We wish to generalize this to the case that ϕ is a smooth function between
any smooth manifolds M and N.

Definition 2.10 (curves derivatives). Let M be a smooth manifold and γ be
a curve R → M , γ′(t0) = γ∗(

d
dt |t0) ∈ Tγ(t0)M (because d

dt |t0) is a standard
coordinate basis in Tt0R.

3 Riemannien metrics

Definition 3.1 (Tensor). Let V be a finite dimensional vector space, we can
define the covariant k-tensor as a multilinear map Tk(V ) : V × ...× V → R,
the contravariant k-tensor T k(V ) : V ∗× ...×V ∗ → R and the mixed T l

k(V ) :
V × ...× V × V ∗ × ...× V ∗ → R with k copies of V and l copies of V ∗

which can be respectively written Tk(V ) = V ∗ ⊗ ... ⊗ V ∗, T k(V ) = V ⊗
...⊗ V and T l

k(V ) = V ∗ ⊗ ...⊗ V ∗ ⊗ V ⊗ ...⊗ V .

Definition 3.2 (Bundle of tensors). Let M be smooth manifold. T l
kM ="

p∈M T l
k(TpM) and T l

kM = {smooth sections of T l
kM}.

Definition 3.3. Let M be a smooth manifold, a Riemannian metric g is
a family of, smooth symmetric 2-tensor positive definite, gp on the tangent
space TpM at each point p.
(M,g) is called a Riemannian manifold, and g can be omitted if it is induced.
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Definition 3.4. The tangent bundle of M a smooth manifold, assigns for
every p point of M a vector space, called the tangent vector space, TpM .

Definition 3.5. Let (x1, ..., xn) : U → Rn be a system of smooth local coor-
dinates on M a smooth manifold. The vectors { ∂

∂x1 |p, ..., ∂
∂xn |p} form a basis

of the vector space TpM , ∀p.
Thus one can define the metric tensor ”components” ∀p, gij |p = gp(

∂
∂xi |p, ∂

∂xj |p),
which give that the matrix ((gij)) is symmetric, definite, positive.
It can be written in terms of dual basis (dx1, ..., dxn) of the cotangent bundle
as g =

#
i,j gijdx

i ⊗ dxj.
Finally if we introduce the Einstein notation and the symmetric product on
covectors we can write g = gijdx

i ⊗ dxj = gijdx
idxj

Theorem 3.6. Every smooth manifold admits a Riemannian metric

Proof. Use of partitions of unity, theory not included in this study.

4 Riemannian manifold

4.1 Curves

In the plane R2 formally we have κ(t) = |γ̈(t)| to define curvature which in
that case would be κ(t) = 1

R with R the radius of the osculating circle. Then
choosing a normal vector field N along the curves we can consider that κ(t)
can be < 0.

Theorem 4.1 (Plane curve classification theorem). γ ≡ γ (for N and N)
⇔ ∀t,KN (t) = KN (t).

Theorem 4.2 (total curvature theorem). If γ : [a, b] → R2 is a unit speed
closed curve such that γ̇(a) = γ̇(b) and N is the inward pointing normal.

Then
$ b
a κN (t)dt = 2π

Then we can define different parameters such as
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• The principal curvatures of S at p : κ1,κ2, resp. minimum and maxi-
mum of the curvatures of all curves going through the point p on the
surface S. They are not intrinsic.

• The Gaussian curvature : κ = κ1κ2 which is intrinsic.

On the left κ1 = κ2 = 0 ⇒ κ = 0 and on the right κ1 = 0,κ2 = 1 ⇒ κ = 0.
But we have a diffeomorphism between these two surfaces.

Theorem 4.3 (uniformization theorem). Every connected 2-manifold is dif-
feomorphic to a quotient of one of the three constant curvature model surface
such as :

6.png

Resp. κ = 0 ; κ < 0 ; κ > 0

Therefore every connected 2-manifold has a complete Riemann metric with
constant Gaussian curvature.

We will generalize this notion of curvature in a arbitrary manifold

4.2 Geodesics

Theorem 4.4. A complete, connected Riemannian manifold M with con-
stant sectionnal curvature is isometric to M̃/Γ where M̃ is one of the con-
stant curvature model spaces : Rn, Sn

R, Hn
R and Γ is a discrete group of

isometries of M̃ isomorphic to π1(M), and acting freely and properly dis-
continuously on M̃ .
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Theorem 4.5 (Cartan-Hadamard). Suppose M is a complete, connected,
Riemannian n-manifold with all sectionnal curvature less than or equal to
zero Then the universal covering space of M is diffeomorphic to Rn.

Lemma 4.6. Let V be a finite-dimensional vector space. There is a natural
(basis independent) isomorphism between T k

l+1(V ) and the space of multilin-
ear maps : V ∗ × ...× V ∗ × V × ...× V → V with l copies of V ∗and k copies
of V.

We can define Trace (or contraction) which lowers the rank of a tensor
by 2. tr : T 1

1 (V ) → R is the usual trace. More generally : tr : T k+1
l+1 (V ) →

T k
l (V ) by (trF )(ω1, ...,ωl, V1, ..., Vk) being the trace of F (ω1, ...,ωl, •, V1, ..., Vk, •) ∈

T 1
1 (V ). In term of basis : (trF )j1...jli1...ik

= F j1...jlm
i1...ikm

.

From now on every manifold is taken as smooth, Hausdorff and second
countable.

4.3 Vector bundles

Definition 4.7. Let (E,M,π : E → M) be a smooth k-dimensional vector
bundle. Which means that the total space E is a smooth manifold, the base
space M is a smooth manifold and the projection π is a surjection map.

1. Each Ep = π−1(p) (called the fiber of E over p) is endowed by a
structure pf a vector space

2. For each p ∈ M , there exists a neighborhood U of p and a diffeomor-
phism ϕ : π−1(U) → U × Rk (called a local trivialization of E) such
that the following diagram commutes :

Definition 4.8. If π : E → M is a vector bundle over M, a section of E
is a map F : M → E such that π ◦ F = id, and a smooth section if the map
F is smooth between manifolds.

Lemma 4.9. Let F : M → E be a section of a vector bundle.
F is smooth if and only if the components F j1...jl

i1...ik
of F in term of any smooth

coordinate map {Ei} on an open set U ∈ M depend smoothly on p ∈ U

Definition 4.10. T (M) is the space of smooth sections of TM (tangent
bundle : bundle of all the tangent space TpM). In other words T (M) is the
space of smooth vector fields on M.
In that perspective a tensor field on M is also a smooth section of some
tensor bundle T k

l M .
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Definition 4.11. A Riemannian metric g is a 2-tensor field (i.e. g ∈
T 2(M)), symmetric, positive definite

Definition 4.12 (Elementary Constructions). Raising and lowering indices
: given a metric g on M, we can define a map, called flat, from TM to T ∗M .
Lowering index : X )→ Xb, such that Xb(Y ) = g(X,Y ). We can write that

Xb = g(Xi∂i, •) = gijX
idxj

which can be written
Xb = Xjdx

j ;Xj = gijX
i

Raising index : ω )→ ω# being the inverse map. ωi = gijωj with ((gij)) the
matrix inverse of ((gij = g(ei, ej)).

Definition 4.13 (Gradient). Let f be a real-valued, smooth function on a
Riemannian manifold. We have grad(f) = df# = gij∂if∂j.

Definition 4.14. • Two metrics g1 and g2 on a manifold M are said
to be conformal to each other if there is a positive definite function
f ∈ C∞(M) such that g2 = fg1.

• Two Riemannian manifolds (M, g) and (M̃, g̃) are said to be confor-
mally equivalent if there is a diffeomorphism ϕ : M → M̃ such that
ϕ∗g̃ is conformal to g.

Remarks :

• We can define the trace of a 2-tensor on M a Riemannian manifold with
h# being a (11)-tensor thus we can define the trgh = trh# = gijhij .

• Equivalence between Rn and Sn
R ⊂ Rn+1 :

The stereographic projection from north pole can be written σ : Sn
R\N →

R such that P = (ζ1, ..., ζn, τ) )→ u ∈ Rn where U = (u1, ..., un, 0) is
the point where the line through N and P intersect the hyperplan
{τ = 0} in Rn+1.
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Thus σ(ζ, τ) = u = R
R−τ ζ.

Lemma 4.15. The stereographic projection is a conformal equivalence be-
tween Sn

R\{N} and Rn.

Proof. ġR being the metric on the sphere, V ∈ TqRn,

(σ−1)∗ġR(V, V ) = ġR(σ
−1
∗ V,σ−1

∗ V ) = g(σ−1
∗ V,σ−1

∗ V )

where g is an Euclidien metric on Rn+1.

σ−1
∗ V = V i∂ζ

j

∂ui
∂

∂ζj
+ V i ∂τ

∂ui
∂

∂τ
= V ζj

∂

∂ζj
+ V τ

∂

∂τ

V ζj = V (
2R2uj

|u|2 +R2
=

2R2V j

|u|2 +R2
− 4R2uj〈V, u〉

(|u|2 +R2)2

V τ = V (R
|u|2 −R2

|u|2 +R2
) =

2R〈V, u〉
|u|2 +R2

− 2R(|u|2 −R2)〈V, u〉
(|u|2 +R2)2

=
4R3〈V, u〉

(|u|2 +R2)2

And because V (|u|2) = 2
#

k V
kuk = 2〈V, u〉.

g(σ−1
∗ V,σ−1

∗ V ) =

n!

j=1

(V ζj)2 + (V τ)2 =
4R4

(|u|+R2)2
|V |2

Lemma 4.16. The sphere is locally conformally float i.e. each point has a
neighborhood that conformally equivalent to an open set of Rn. The stere-
ographic projection gives such an equivalence (for north pole neighborhood,
take the projection from the south pole)

Definition 4.17. • Minkowski metric : Lorentz metric m on Rn+1 that
is written in terms of coordinates (ζ1, ..., ζn, τ) as m = (dζ1)2 + ... +
(dζu)2 − (dτ)2

• Lorentz metrics : pseudo-Riemannian metrics of index 1

Definition 4.18. A pseudo-Riemannian metric on a smooth manifold M :
is a symmetric 2-tensor field g that is non degenerate at each point p in M.
This means that the only vector orthogonal to everything is the zero vector.
More formally , ∀Y ∈ TpM, g(X,Y ) = 0 ⇔ X = 0

If g is a Riemannian metric (gij) is positive definite. But pseudo-R.
metrics doesn’t need to be positive. Given a p.R.m. g and a point p in M,
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by using a simple extension of Gram-Schmidt algorithm one can construct
a basis (E1, ..., En) for TpM in which

g = −(ϕ1)2 − ...− (ϕr)2 + (ϕr+1)2 + ...+ (ϕn)2 (1)

where r is called the index.

Remark : Einstein Lorentz metric in R4 : in absence of gravity the
law of physics have the same form in any coordinate system in which the
Minkowski metric has the expression 1. The differing physical characteristic
of ”space” and ”time” arise from the fact that they are subspaces on which
g is positive definite and negative definite, respectively.

The general theory of relativity includes gravitational effects by allowing
the Lorentz metric to vary from point to point.

4.4 Hyperbolic space Hn
R

Definition 4.19. Different definitions that are mutually isometric

1. Hyperbolic Model : Hn
R is the ”upper sheet” {τ = 0} of the two sheeted

hyperboloid in Rn+1 defined in coordinates (ζ1, ..., ζn, τ) by the equation
τ2 − |ζ|2 = R2 with the metric h1R = ι∗m where ι : Hn

R → Rn+1.

2. Poincar Ball Model : Bn
R is the ball of radius R in Rn with the metric

given in coordinates (u1, ..., un) by h2R = 4R4 (du
1)2+...+(dun)2

(R2−|u|2)2

3. Poincar Half-Space Model : Un
R is the upper half space in Rn de-

fined in coordinates (x1, ..., xn−1, y) by {y > 0} with the metric h3R =

R2 (dx
1)2+...+(dxn−1)2+dy2

y2

Remarks : Bn
R and Un

R make it clear that the hyperbolic metric is locally
flat. A Riemannian manifold is said to be flat if its Riemannian curvature
tensor is null everywhere. Thus a (pseudo) Riemannian manifold is confor-
mally flat if each point has a neighborhood that can be mapped to flat space
by a conformal transformation (a map that locally preserves angles but not
necessarily lengths).

5 Connections

Definition 5.1. π : E → M be a vector bungle over a manifold M and let
ε(M) denote the space of smooth sections of E.
A connection in E is a map ∇ : T (M) × ε(M) → ε(M) such that X,Y )→
∇XY satisfying :

13



1. ∇XY is linear over C∞(M) in X :

∀f, g ∈ C∞(M),∇fX1+gX2Y = f∇X1Y + f∇X2Y

2. ∇XY is linear over R in Y :

∀a, b ∈ R,∇X(aY1 + bY2) = a∇XY1 + b∇XY2,

3. ∇ satisfies the following product rule :

∀f ∈ C∞(M),∇X(fY ) = f∇XY + (Xf)Y

∇ is read ”del” and ∇XY is called the covariant derivative of Y in the
direction X.

Lemma 5.2. ∇ a connection in a bundle E ; X ∈ T (M) ; Y ∈ ε(M) ;
p ∈ M . Then ∇XY |p depends only on the values of X and Y in an arbitrary
neighborhood of p.

Proof. We use the product rule and a smooth bump function such as we did
for Dv|a.

Lemma 5.3. ∇XY |p depends only on the values of Y in a neighborhood of
p and the value of X at p.

Proof. By linearity it suffices to show that∇XY |p = 0 wheneverXp = 0. We
choose a coordinate neighborhood U of p, and write X = Xi∂i in coordinate
on U with Xi(p) = 0. Thus

∇XY = ∇Xi∂iY = Xi∇∂iY ⇒ ∇XY |p = Xi(p)∇∂iY |p = 0

allowed because of Lemma 5.2.

Because of Lemma 5.3 we can write ∇XpY in place of ∇XY |p.

Definition 5.4. A linear connection on M is a connection in TM. i.e.
T (M)× T (M) → T (M).

Remark : Even if it looks like the def of a (21)-tensor field it is not a
tensor field because it is not linear over C∞(M) on Y, but instead satisfy
the product rule.

If we choose a local frame {Ei} for TM of an open set U ⊂ M , we can
write ∇EiEj = Γk

ijEk where Γk
ij is called the Christoffel symbols of ∇.
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Lemma 5.5. Let ∇ be a linear connection, and let X,Y ∈ T (U) be expressed
in terms of local frame by X = XiEi;Y = Y jEj Then

∇XY = (XY k +XiY jΓk
ij)Ek

Definition 5.6. The Euclidean Connection on Rn is defined as ∇XY =
(XY j)∂j

Lemma 5.7. Suppose M is a manifold covered by a single coordinate chart.
There is a one-to-one correspondance between linear connections on M and
choices of n3 smooth function {Γk

ij} on M by the rule :

∇XY = (Xi∂iY
k +XiY jΓk

ij)∂k

Proposition 5.8. Every manifold admits a linear connection.

Proof. The notion of partition of unity is needed for the proof, but it was
out of the scope of my study.

Lemma 5.9. Let ∇ be a linear connection on M. There is a unique con-
nection in each tensor bundle T k

l M , also denoted ∇, such that the following
conditions are satisfied

1. On TM , ∇ agrees with the given connection.

2. On T 0M , ∇ is given by ordinary differentiation of functions

∇Xf = Xf = Xi∂if

3. ∇ obeys the following product rule with respect to tensor product :

∇X(F ⊗G) = (∇XF )⊗G+ F ⊗∇XG

4. ∇ commutes with all contractions : if ”tr” denotes the trace on any
pair of indices, ∇X(trY ) = tr(∇XY ).

This connection satisfies the following additional properties :

1. ∇ obeys the following product rule with respect to the natural pairing
(between covector field and vector field) :

∇X〈ω, Y 〉 = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉

15



2. For any F ∈ T k
l (M), vector fields Yi and 1-forms ωj :

(∇XF )(ω1, ...,ωl, Y1, ..., Yk) = X(F (ω1, ...,ωl, Y1, ..., Yk)

−
l!

j=1

F (ω1, ...,∇Xωj , ...,ωl, Y1, ..., Yk)

−
l!

i=1

F (ω1, ...,ωl, Y1, ...,∇XY i, ..., Yk)

Lemma 5.10 (Construction of the total covariant derivative). If ∇ is a
linear connection on M, and F ∈ T k

l (M), the map :

∇F : T 1(M)× ...× T 1(M)× T (M)× ...× T (M) → C∞(M)

given by ∇F (ω1, ...,ωl, Y1, ..., Yk, X) = ∇XF (ω1, ...,ωl, Y1, ..., Yk) defines a
(k+1
l )-tensor field.

Lemma 5.11 (Tensor characterization lemma). A map T : T 1(M) × ... ×
T 1(M) × T (M) × ... × T (M) → C∞(M) is induced by a (kl )-tensor field as
above if and only if it is multilinear over C∞.

Similarly : T : T 1(M)× ...× T 1(M)× T (M)× ...× T (M) → T (M) is
induced by a (kl+1)-tensor field if and only if it is multilinear over C∞.

Definition 5.12. (∇vα)p is defined to satisfy tensor contraction and prod-
uct rule. That is, (∇vα)p is defined as the unique 1-form at p such that
∇vα)p(up) = ∇vα(up))− α(∇v(up)), ∀up in a neighborhood of p.

The covariant derivative of a covector field along a covector field is again
a covector field.

Definition 5.13. ∇F is called the total covariant derivation of F.
Let u ∈ C∞(M), then ∇u ∈ T 1(M) is just the 1-form du, because both

tensor have the same action on vectors : 〈∇u,X〉 = .∇Xu = Xu = Xi∂iu =
〈du,X〉.

Remark :

• u ∈ T 0M ⇒ ∇u : T (M) → C∞(M).

• ∇2u = ∇(∇u)) is called the covariant Hessian of u.

• We will separate the indices resulting from the differentiation from
the preceding indices. If Y is a vector field written Y = Y i∂i, The
component of ∇Y are written Y i

;j so that ∇Y = Y i
;j ∂i ⊗ dxj . Thus

Y i
;j = ∂jY

i + Y kΓi
jk.
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Lemma 5.14. Let ∇ be a linear connection. The component of the total
covariant derivative of (kl )-tensor field F with respect to a coordinate system
:

F j1...jl
i1...ik ;m

= ∂mF j1...jl
i1...ik

+

l!

s=1

F j1...p...jl
i1...ik

Γjs
mp −

k!

s=1

F j1...jl
i1...p...ik

Γp
mis

5.1 Vector fields along curves

Definition 5.15. • Curve : always taken smooth, parametrized curves.

• Curve segment : curve whose domain I is closed.

• Smoothness of γ on I, if I has an endpoint it means by definition that
γ extends to a smooth curve on some open interval containing I.

• Let γ : I → M be a curve, the velocity γ̇(t) of γ is invariantly defined
as the pushforward γ∗(

d
dt):

γ̇(t)f =
d

dt
f ◦ γ(t) ; γ̇(t) = γ̇i(t)∂i

• A vector field along a curve is a smooth map : V : I → TM such that
V (t) ∈ Tγ(t)M .

• J(γ) : space of vector fields along γ.

• γ̇(t) ∈ Tγ(t)M which is smooth proven by γ̇i(t)∂i because γ is smooth
thus coordinates are smooth.

• Suppose γ : I → M curve ; Ṽ ∈ T (M) vector field on M. For each
t ∈ I, let

V (t) = Ṽγ(t) (2)

. V is smooth because T (M) is the set of smooth sections s : M → E
and by definition γ is smooth thus V = s ◦ γ : I → TM is smooth.

• A vector field along γ is said to be extendible if there exists a vector
field Ṽ on a neighborhood of γ(I) that is related to V according to the
identity 2.

• For exemple : If γ(t1) = γ(t2) and γ̇(t1) ∕= γ̇(t2) Then γ̇ is not ex-
tendible.
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Definition 5.16 (Covariant derivatives along curves). Let ∇ be a linear
connection on M, for each curve γ : I → M , ∇ determines a unique operator
:

Dt : T (γ) → T (γ)

satisfying :

1. Linearity over R

Dt(aV + bW ) = aDtV + bDtW, ∀a, b ∈ R

2. Product rule :

Dt(fV ) = ḟV + fDtV, ∀f ∈ C∞(I)

3. If V is extendible, then for any extension Ṽ of V :

DtV (t) = ∇γ̇(t)Ṽ

For any V ∈ T (γ), DtV is called the covariant derivative of V along
γ.

5.2 Geodesics

Let M be a manifold and γ a curve; ∇ a linear connection on M.

Definition 5.17.

• The acceleration of γ is the vector field Dtγ̇ along γ.

• A curve is called a geodesic with respect to ∇ if its acceleration is zero
i.e. Dtγ̇ = 0.

Theorem 5.18 (Existence ane Uniqueness of Geodesics). Let M be a man-
ifold with linear connection. For any p ∈ M , any V ∈ TpM , any t0 ∈ R.
There exist an open interval I ⊂ R countaining t0 and a geodesic γ : I → M
satisfying γ(t0) = p, γ̇(t0) = V . Any two such geodesics agree on their
common domain.

Proposition 5.19 (The geodesic equation). γ : I → M is a geodesic ⇔
ẍk(t) + ẋi(t)ẋj(t)Γk

ij(x(t)) = 0 with γ(t) = (x1(t), ..., xn(t)).

It follows that we can define the maximal geodesic for any p and V noted
γV , initial point p and velocity V (p = π(V ) because V ∈ TpM thus no need
to specify).
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Definition 5.20. Let M be a manifold with a linear connection ∇, V a
vector field along a curve γ.

V is said to be parallel along γ with respect to ∇ if DtV = 0.
A vector field is said to be parallel if it is parallel on every curve.

Thus geodesics can be characterized as a curve whose velocity vector is
parallel along the curve.

We also have : V is parallel if and only if its total covariant derivative
∇V vanishes identically.

Theorem 5.21 (Parallel translation). γ : I → M ; t0 ∈ I; V0 ∈ Tγ(t0)M
Then ∃!V parallel vector field along γ such that V (t0) = V0.

V is called the parallel translate of V0 along γ.

Let define Pt0t1 : Tγ(t0)M → Tγ(t1)M by setting Pt0t1V0 = V (t1) where
V is the parallel translate of V0 along γ.

Proposition 5.22. A connection ”connects” nearby tangent spaces.

Elements of proof. DtV (t) = ∇γ̇(t)Ṽ where V (t) = Ṽγ(t) and DtV (t0) =

limt→t0

P−1
t0t

V (t)−V0

t−t0
.

5.3 Riemannian Geodesics

Definition 5.23. ∇⊤ : T (M)×T (M) → T (M) by setting ∇⊤
XY = π⊤(∇XY )

where X and Y are extended arbitrary to Rn, ∇ is the Euclidean connection
on Rn and for any point p ∈ M , π⊤ : TpRn → TpM is the orthogonal
projection.

This is called the tangentiel connection on M.

Proposition 5.24. Any vector field on M can be extended to a smooth
vector field on Rn

Definition 5.25. A linear connection ∇ is said to be compatible with g (a
Riemann metric) if

∇X〈Y, Z〉 = 〈∇XY, Z〉 = 〈Y,∇XZ〉

with X,Y,Z vector fields

Lemma 5.26. ∇ a linear connection on a Riemannian manifold.

1. ∇ is compatible with g
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2. ∇g = 0

3. If V,W are vector field along any curve γ,

d

dt
〈V,W 〉 = 〈DtV,W 〉+ 〈V,DtW 〉

4. If V, W are parallel vector fields along a curve γ, Then 〈V,W 〉 is
constant.

The tangentiel connection on any embedded submanifold of Rn is com-
patible with the induced Riemannian metric.

Definition 5.27.

• The torsion tensor is defined as a (21)-tensor field, τ : T (M)×T (M) →
T (M) such that τ(X,Y ) = ∇XY −∇Y X − [X,Y ]
where [X,Y ] = X(Y (f))− Y (X(f)).

• A linear connection ∇ is said to be symmetric if its torsion vanishes
identically, i.e. ∇XY −∇Y X = [X,Y ].

Theorem 5.28 (Fundamental Lemma of Riemannian Geometry). Let (M,g)
be a Riemannian manifold (or pseudo-Riemannian)

There exists a unique linear connection ∇ on M that is compatible with
g and symmetric.

Proof. The uniqueness is shown by computation :

〈∇XY, Z〉 − 〈Y,∇XZ〉 = ∇X〈Y, Z〉 = X〈Y, Z〉

And symmetry gives 〈∇1
XY −∇2

XY, Z〉 = 0, ∀X,Y, Z
Then existence is given by 〈∇∂i∂j , ∂l〉 and ∇∂i∂j = Γm

ij∂m. Thus we can
define

Γk
ij =

1

2
gkl(∂igjl + ∂jgil + ∂lgij)

And then we have symmetry and proof of compatibility with

gij;k = ∂kgij − Γl
kiglj − Γl

kjgil

which can be prooved to be zero thus ∇g = 0.

Proposition 5.29. From the previous proof we have :

1. 〈∇XY, Z〉 = 1
2(X〈Y, Z〉+Y 〈X,Z〉−Z〈X,Y 〉−X〈Y, [Y,X]〉+〈X, [Z, Y ]〉
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2. 〈∇∂i∂j , ∂l〉 = 1
2(∂i〈∂j , ∂l〉 + ∂j〈∂l, ∂i〉 − ∂l〈∂i, ∂j〉) ; gij = 〈∂i, ∂j〉 ;

∇∂i∂j = Γm
ij∂m

3. Γm
ij gml =

1
2(∂igjl + ∂jgli + ∂lgij) ; gmlg

lk = δkm

4. Γk
ij =

1
2g

kl(∂igjl+∂jgli+∂lgij) This formula certainly defined a connec-

tion in each chart, and because Γk
ij = Γk

ji, the connection is symmetric

if gij;k = ∂kgij − Γl
kiglj − Γl

kjgil.

Lemma 5.30. All Riemannian geodesics are constant speed curve i.e. |γ̇(t)|
is independent of t.

Proof. γ geodesic thus γ̇ vector field such that Dtγ̇ = 0 thus γ̇ is parallel to
γ. Hence 〈γ̇, /dotγ〉 = 0 because d

dt〈V,W 〉 = 〈DtV,W 〉+ 〈V,DtW 〉.

Proposition 5.31 (Naturalness of the Riemannian Connection). Suppose
ϕ : (M, g) → (M̃, g̃) an isometry

1. ϕ takes the Riemannian connection ∇ of g to the Riemannian connec-
tion ∇ of g̃ in the sense that :

ϕ∗(∇XY ) = ∇ϕ∗X(ϕ∗Y )

2. If γ is a curve in M and V is a vector field along γ, then

ϕ∗DtV = D̃t(ϕ∗V )

3. ϕ takes geodesics to geodesics : if γ is the geodesics in M from p with
initial velocity V, ϕ ◦ γ is the geodesics in M̃ with initial point ϕ(p)
and initial velocity ϕ∗V .

6 The exponential map

Definition 6.1. E = {V ∈ TM : γV is defined on an interval countaining
[0, 1]}. Exponential map : exp : E → M such that exp(V ) = γV (1). The
restricted exponential map expp is the restriction to E ∩ TpM = Ep.

Proposition 6.2. 1. E is an open subset of TM countaining the zero
section, and each set Ep is star-shaped with respect to 0.

2. For each V ∈ TP , the geodesic γV is given by γV (t) = exp(tV ) for all
t such that either side in defined.
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3. The exponential map is smooth.

Lemma 6.3 (Rescaling lemma). For any V ∈ TM, c, t ∈ R, γcV (t) =
γV (ct) whenever either side is defined

Proposition 6.4 (Naturalness of the Exponential map). Suppose ϕ : (M, g) →
(M̃, g̃) is an isometry. Then, for any p in M, the following diagram com-
mutes :

6.1 Normal neighborhood and normal coordinates

Lemma 6.5 (Normal neighborhood lemma). For any p ∈ M there is a
neighborhood V of the origin in TpM and U of p in M such that expp : V → U
is a diffeomorphism.

Proof. Use of the inverse function theorem on Manifolds once we have (expp)∗
inversible at the point 0.

Since TpM is a vector space there is a natural identification T0(TpM) =
TpM . Let V ∈ TpM, f ∈ C∞(M), We can choose τ a curve in TpM starting
at 0 and with initial velocity V (for exemple τ(t) = tV ), and we can observe
that

τ̇ = τ∗(
d

dt
) = V

Hence

τ̇f =
d

dt
|t=0f ◦ τ(t) = V f

And now

(expp)∗V = (expp)∗τ∗(
d

dt
) = (expp ◦ τ)∗(

d

dt
)

=
d

dt
|t=0expp(tV ) =

d

dt
|t=0γV (t) = V
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Definition 6.6. • Any open neighborhood U of p ∈ M that is a the dif-
feomorphic image under expp of a star-shaped open neighborhood of
O ∈ TpM (as in the preceding lemma) is called a normal neighbor-
hood of p.

• If ε > 0 is such that expp is a diffeomorphism on the ball Bε(0) ⊂ TpM
(where the radius of the ball is measured with respect to the norm
defined by g) then the image expp(Bε(0)) is called a geodesic ball in
M.

• Also if the closed ball Bε(0) is contained in an open set V ⊂ TpM on
which expp is a diffeomorphism, then expp(Bε(0)) is called a closed
geodesic ball and expp(∂Bε(0)) is called a geodesic sphere.

• If ϕ = E−1 ◦ exp−1
p : U → Rn is a coordinate chart with U normal

neighborhood of p, and E : Rn → TpM such that E(x1, ..., xn) = xiEi.
Any such coordinates are called (Riemannian) normal coordinates
centered at p. There is a one to one correspondence between normal
coordinates charts and orthogonal basis.

• In any normal coordinate charts centered at p, r define the radial dis-
tance function by

r(x) =

%!

i

(xi)2

and the unit radial vector field ∂
∂r by

∂

∂r
=

xi

r

∂

∂xi

• In Euclidean space r(x) is the distance to the origin and ∂
∂r is the unit

vector field tangent to straight lines through the origin.

Proposition 6.7 (Properties of normal coordinates). Let (U , (xi)) be any
normal coordinate chart centered at p

1. For any V = V i∂i ∈ TpM the geodesic γV starting at p with initial
velocity vector V is represented in normal coordinates by the radial line
segment γV (t) = (tV 1, ..., tV n) as long as γV stays within U .

2. The coordinates of p are (0, ..., 0)

3. The components of the metric at p are gij = δij
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4. Any Euclidean ball {x; r(x) < ε} contained in U is a geodesic ball in
M.

5. At any point q ∈ U\p, ∂
∂r is the velocity vector of the unit speed geodesic

from p to q, and therefore has unit length with respect to g.

6. The first partial derivative of gij and the Christoffel symbols vanish at
p

∀k, ∂gij
∂xk

(p) = 0

Γk
ij(p) = 0

Definition 6.8. Geodesics starting at p and lying in a normal neighborhood
of p are called radial geodesics.

Proof. Elements of proof :
V = V i∂i and we can recall that ϕ = E−1 ◦ exp−1

p : U → Rn is a normal
coordinate chart. We have

ϕ(γV (t)) = ϕ(expp(tV )) = ϕ(expp(tV
i∂i)) = E−1(tV i∂i) = (tV 1, ..., tV n)

Thus γV (t) can be written as (tV 1, ..., tV n) in normal coordinates. Hence
ϕ(p) = ϕ(γV (0)) = (0, ..., 0).

Definition 6.9. An open set W ⊂ M is called uniformly normal if there
exists some δ > 0 such that W is contained in a geodesic ball around each
of its points i.e. ∀g ∈ W, ∃δ > 0 : W ⊂ expq(Bδ(0))

Lemma 6.10. Given p ∈ M and any neighborhood U of p, there exists a
uniformly normal neighborhood W of p contained in U .

6.2 Geodesics of the model spaces

• Euclidean Space : The Euclidean geodesics are straight lines, and
constant-coefficient vector fields are parallel

Proof.

• Spheres : The geodesics on Sn
R are precisely the ”great circles” with

constant speed parametrizations.
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Proof. If we consider a geodesic starting from north pole N and initial
velocity ∂1 we can show that it is in the plane x2 = ... = xn = 0
in Rn+1 because if ∃i : xi(t0) ∕= 0 we can consider the isometry
ϕ(x1, ..., xn+1) = (x1, ...,−xi, ..., xn+1) but N = γ(0) and V = γ̇(0)
are invariant through ϕ, thus same geodesic, but ϕ(γ(t0)) ∕= γ(t0)
contradiction.

• Hyperbolic spaces : The geodesics on the hyperbolic spaces are the
following curves with constant speed parametrization

1. Hyperboloid model : The ”great hyperboles”.

2. Ball Model : The line segments through the origin and the circu-
lar arcs that intersects ∂Bn

R orthogonally.

3. Half-space model : the vertical half lines and the semi-circles with
centers on the y = 0 hyperplane.
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7 Geodesics and distance

M is a smooth n-manifold endowed with a fixed Riemannian metric g

Definition 7.1. If γ is a curve segment we define the length of γ to be

L(γ) =

& b

a
|γ̇(t)|dt

Definition 7.2. We define the reparametrization of γ to be a curve segment
of the form γ̃ = γ ◦ ϕ where ϕ : [c, d] → [a, b] is a smooth map with smooth
inverse.

Lemma 7.3. For any curve segment γ : [a, b] → M and any reparametriza-
tion γ̃, L(γ) = L(γ̃).

A regular curve is a smooth curve verifying ∀t, γ̇(t) ∕= 0 Geodesics are
automatically regular, since they have constant speed.
A continuous map γ is called a piecewise regular curve segment if there
exists a finite subdivision such that γ is a regular curve on each segment,
they will be referred as admissible curves.

The length function of an admissible curve γ : [a, b] → M is the function
s : [a, b] → R :

s(t) = L(γ|[a,b]) =
& t

a
|γ̇(u)|du
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s is smooth where γ is and ṡ(t) = |γ̇(t)|.
For each regular paramtrized Cr-curve, where r ≥ 1 the function s is

defined and writing γ(s) = γ(t(s)) where t is the inverse function of the
function s (abuse of notation where s(t) is the opposite of t(s), s taking
both as a variable and a function).

This is a reparametrization γ of γ called an arc-length parametrization,
natural param., unit-speed param. and s(t) is called the natural parameter
of γ, | ˙γ(s(t))| = 1.

If γ is any admissible curve and f ∈ C∞([a, b]) we define the integral of
f with respect to arc length :

&

γ
fds =

& b

a
f(t)|γ̇(t)|dt

7.1 Riemannian distance function

Definition 7.4. Suppose M is a connected Riemannian manifold. ∀p, q ∈ M
we can define the Riemannian distance d(p, q) to be the infinimum of the
lengths of all admissible curves from p to q.

Lemma 7.5. With the distance function d defined above any connected Rie-
mannian manifold is a metric space whose induced topology is the same as
the given manifold topology.

7.2 Geodesics and minimizing curves

• An admissible curv γ in a Riemannian manifold is said to be mini-
mizing if L(γ) ≤ L(γ) for any other admissible curve γ with the same
endpoints.

• L is called a functionnal

• An admissible family of curves is a continuous map Γ : (−ε, ε)×[a, b] →
M that is smooth on each rectangle of the form (−ε, ε)× [−ai−1, ai] for
some finite subdivision from a to b and such that t )→ Γs(t) = Γ(s, t)
is an admissible curve for each s ∈ (−ε, ε).
If Γ is an admissible family, a vector field along Γ is a continuous map
V : (−ε, ε) × [a, b] → TM such that V (s, t) ∈ TΓ(s,t)M for each (s, t)
and such that V |(−ε,ε)×[ãi−1,ãi] is smooth for some subdivision ãi from
a to b.
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• Any admissible family Γ defines two collections of curves : the main
curves : Γs(t) = Γ(s, t) defined on [a, b] by setting s constant and
the transverse curves Γt(s) = Γ(s, t) defined on (−ε, ε) by setting t
constant. Transverse are smooth while main are only piecewise regular.

• Whenever Γ is smooth we denote :

∂tΓ(s, t) =
d

dt
Γs(t) ; ∂sΓ(s, t) =

d

ds
Γt(s)

• If V is a vector field along Γ, we can compute the covariant derivation
of V either along the main curves or along the transverse curves (at
least where the former are smooth) resp. DtV , DsV .

Lemma 7.6. Let Γ be an admissible family of curves in a Riemannian (or
pseudo) manifold On any rectangle where Γ is smooth, we have

Ds∂tΓ = Dt∂sΓ

Proof. A simple computation gives the identity.

Definition 7.7. If γ is an admissible curve, a variation of γ is an admissible
family Γ such that Γ0(t) = γ(t), ∀t ∈ [a, b]. It is called a proper variation
or fixed endpoint variation if in addition Γs(a) = γ(a) and Γs(b) = γ(b) for
any s.

If Γ is a variation of γ, the variation field of Γ is the vector field V (t) =
∂sΓ(0, t) along γ (means that V (t) ∈ Tγ(t)M). A vector field V along γ is
proper if V (a) = V (b) = 0.

Lemma 7.8. If γ is an admissible curve and V a vector field along γ.
Then V is the variation field of some variation of γ.

Proof. Set Γ(s, t) = exp(sV (t)) = γV (t)(s) thus ∂sΓ(s, t) = γ̇V (t)(s). But by
definition γ̇V (t)(O) = V (t) Thus V (t) = ∂sΓ(0, t) and V continuous on this
whole domain. Conclusion V is a variation field of a variation of γ.

Proposition 7.9 (First variation formula). Let γ be a unit speed admissible
curve, Γ a proper variation of γ and V its variation field :

d

ds
|s=0L(Γs) = −

& b

a
〈V,Dtγ̇〉dt−

k−1!

i=1

〈V (ai),△iγ̇〉

Where △iγ̇ = γ̇(a+i ) − γ̇(a−i ) is the ”jump” in the tangent vector field γ̇ at
ai.
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Proof. Since L(Γs) is smooth and interval compact [ai−1, ai] we can

d

ds
L(Γs|[ai−1,ai]) =

d

ds

& ai

ai−1

|Γ̇(t)|dt =
& ai

ai−1

1

|T |〈DtS, T 〉dt

with T (s, t) = ∂tΓ(s, t) and S(s, t) = ∂sΓ(s, t) by using that d
dt〈V,W 〉 =

〈DtV,W 〉+ 〈V,DtW 〉.
It is worth noting that S(0, t) = V (t) as seen before and T (0, t) = γ̇(t)

because Γ is proper. Hence by evaluating at s = 0 and γ being unit speed,
we can use the relation of good behavior a second time and summing over i
to get the identity.

Remark no need for unit speed curve because all curves have a unit speed
reparametrization and the result is independent of parametrization.

Theorem 7.10. Every minimizing curve is a geodesic when it is given a
unit speed parametrization.

Proof. We have the right-hand side of identity of the previous proposition
null for every V. So if we choose V = ϕDtγ̇ with ϕ bump function on
]ai−1, ai[ such that V (ai) = 0, ∀i ⇒ 0 = −

$ ai
ai−1

ϕ|Dtγ̇|2dt ⇒ Dtγ̇ = 0.

Then if we choose V a vector field along γ such that V (ai) = △iγ̇ and
V (aj) = 0, ∀j ∕= i we have 0 = −|△iγ̇|2.
Thus the two one-sided velocity vectors of γ match up at each ai, it fol-
lows from uniqueness of geodesics that γ|[ai,ai+1] is the continuation of the
geodesic γ|[ai−1,ai] and therefore smooth.

Theorem 7.11 (The Gauss lemma). Let U be a geodesic ball centered at
p ∈ M . The unit radial vector field ∂

∂r is g-orthogonal to the geodesic spheres
in U .
Proof.

Remark :
Let (xi) be normal coordinates on a geodesic ball C centered at p in M

and let the radial distance function as defined earlier :
Then grad r = ∂

∂r on U\{p}.

Proof. Since ∂
∂r is transverse to this sphere we can decompose Y as α ∂

∂r +X
for some constant α and some vector X tangent to the sphere.

Proposition 7.12. Suppose p ∈ M and q is contained in a geodesic ball
around p.
Then (up to reparametrization) the radial geodesic from p to q is the unique
minimizing curve from p to q in M.
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Remark :
Within any geodesic ball around p ∈ M , the radial distance function

r(x) is equal to the Riemannian distance from p to q.
This gives that expp(BR(0)) = BR(p) ; expp(BR(0)) = BR(p) and SR(p) =
expp(∂BR(0)).

Definition 7.13. We say a curve is locally minimizing if any t0 ∈ I has
a neighborhood U ⊂ I such that γ|U is minimizing between each pair of its
point.

Theorem 7.14. Every Riemannian geodesic is locally minimizing.

Proof.

We can define the maximal geodesic γ : I → M naturaly. We have the
property :
A Riemannian submanifold is to be geodesically complete if every maximal
geodesic is defined for all t ∈ R.

Theorem 7.15 (Hopf-Rinow). A connected Riemannian manifold is geodesi-
cally complete if and only if it is complete as a metric space.

8 Curvature

Local invariants :

• Non vanishing vector fields : In any suitable coordinates, every non
vanishing vector field can be written locally as V = ∂

∂x1 so they are all
locally equivalent.

• Riemannian metrics on a 1-manifold : If γ : I → M is a local unit
speep parametrization of a Riemannian 1-manifold; then s = γ−1 gives
a coordinate chart in which the metric has the expression g = ds2.
Thus every Riemannian 1-manifold is locally isometric to R

• 2-sphere and the Euclidean space are not locally isometric.

Definition 8.1. If M is any Riemannian manifold the curvature endomor-
phism is the map R : T (M)× T (M)× T (M)× → T (M) defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

Proposition 8.2. The curvature endomorphism is a (31)-tensor field.
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Definition 8.3. The Riemannian curvature tensor is defined as the covari-
ant 4-tensor field :

Rm = Rb

Rm(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉

Lemma 8.4. The Riemannian curvature endomorphism and curvature ten-
sor are local isometry invariants. Formally : if ϕ : (M, g) → (M̃, g̃) is local
isometry then ϕ∗R̃m = Rm

8.1 Flat manifold

Definition 8.5. A Riemannian manifold is said to be flat if it is locally
isometric to the Euclidean space that is, every point has a neighborhood that
is isometric to an open set in Rn with its Euclidean metric.

Theorem 8.6. A Riemannian manifold is flat if and only if its curvature
tensor vanishes identically.

Proposition 8.7. 1. Rijkl = −Rjikl

2. Rijkl = −Rjilk

3. Rijkl = Rljik

4. Rijkl +Rkijl +Rjkil = 0

Theorem 8.8 (Second Bianchi identity / Differiential Bianchi identity).
The total covariant derivative of the curvature tensor satisfies the following
identity :

∇Rm(X,Y, Z, V,W ) +∇Rm(X,Y, V,W,Z) +∇Rm(X,Y,W,Z, V ) = 0

which can be written

Rijkl;m +Rijlm;k +Rijmk;l = 0

8.2 Ricci and scalar curvatures

Definition 8.9. The component of the Ricci curvature are :

Rij = gkmRkijm

And the scalar curvature is defined as the trace of the Ricci tensor :

S = trgRc = Ri
i = gijRij
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Lemma 8.10. The Ricci curvature is a symmetric 2-tensor field.

Lemma 8.11. The covariant derivatives of the Ricci and scalar curvature
satisfy the following identity

divRc =
1

2
∇S

which can be written

Rij
;j =

1

2
S;i

Definition 8.12. A Riemannian metric is said to be an Einstein metric if
its Ricci tensor is a scalar multiple of the metric at each point i.e. for some
function λ, Rc = λg everywhere. Taking trace on both side and noting that
trgg = gijg

ij = δii = dim M . We find that the Einstein condition can be
written

Rc =
1

n
Sg

Proposition 8.13. If g is an Einstein metric on a connected manifold of
dim n ≥ 3 its scalar curvature is constant.

8.3 Einstein field equation

The central assertion of Einstein’s general theory of relativity is that physical
space-time is modeled by a 4-manifold that carries a Lorentz metric whose
Ricci curvature satisfies the following Einstein field equation :

Rc− 1

2
Sg = T (3)

where T is a certain symmetric 2-tensor field (the stress energy tensor) that
describe the density, momentum, and stress of the matter and energy present
at each point in space time. (3) is the variational equation of a certain
functional called the Hilbert action on the space of all Lorentz metrics on a
given 4-manifold.

Einstein theory can be interpreted as the assertion that a physically
realistic space time must be a critical point for this functional.

The vacuum Einstein field equation gives : Rc = 1
2Sg ⇒ S = 0 ⇒ Rc =

0. Hence g is a Einstein metric in the mathematical sense of the word.

The studies in General Relativity generally are separate in two cate-
gories : The first being the studying of model of metrics that could verify
the Einstein field equation in some particular cases, like the well-known
Schwarzschild metric. While the second one is to study the geodesic in a
given space. For exemple the light bending observed near a blackhole.
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