105 – Groupes des permutations d'un ensemble fini. Applications.

Question.

Montrer que la signature est l'unique morphisme surjectif de \mathfrak{S}_n dans $\{-1,1\}$.

Réponse.

Soit $\varphi: \mathfrak{S}_n \to \{-1,1\}$ un morphisme surjectif, soit t une transposition. Toutes les transpositions sont conjuguées et $\{-1,1\}$ est abélien donc φ est constant sur l'ensemble des transpositions. Or les transpositions engendrent \mathfrak{S}_n , donc si $\varphi(t) = 1$, alors $\varphi(\sigma) = 1$ pour tout $\sigma \in \mathfrak{S}_n$. Donc $\varphi(t) = -1$ et $\varphi = \varepsilon$.

Question.

Soit H un sous-groupe d'indice n de \mathfrak{S}_n , alors H est isomorphe à \mathfrak{S}_{n-1} .

Réponse.

Voir le Perrin page 30 dont est issue cette démonstration :

On a |H| = (n-1)!. Si $n \le 3$ c'est évident, si n = 4 alors |H| = 6 donc H est isomorphe à \mathfrak{S}_3 ou à $\mathbb{Z}/6\mathbb{Z}$, le deuxième cas étant impossible car \mathfrak{S}_4 ne contient pas d'éléments d'ordre 6.

Supposons $n \geq 5$ et posons $G = \mathfrak{S}_n$, alors G opère par translation à gauche sur G/H, ce qui fournit un morphisme $\varphi : G \to \mathfrak{S}(G/H) \simeq \mathfrak{S}_n$.

Montrons que φ est injectif : on a $\ker \varphi \subset H$ et $\ker \varphi$ est distingué dans \mathfrak{S}_n , or les sous-groupes distingués de \mathfrak{S}_n pour $n \geq 5$ sont $\{1\}$, \mathfrak{A}_n et \mathfrak{S}_n , donc $\ker \varphi = \{1\}$ car $|H| < |\mathfrak{A}_n|$.

 φ est donc un isomorphisme pour une raison de cardinal, donc $\varphi(H)$ est un sous-groupe de \mathfrak{S}_n d'ordre (n-1)!. Or H est le stabilisateur de H donc $\varphi(H)$ est le stabilisateur d'un point dans \mathfrak{S}_n , d'où $\varphi(H) \simeq \mathfrak{S}_{n-1}$.

Question.

Quel est le nombre de 5-Sylow dans \mathfrak{S}_5 ?

Réponse.

On note n_5 le nombre de 5-Sylow, alors par le deuxième théorème de Sylow, $n_5\equiv 1[5]$ et $n_5\mid 24,$ donc $n_5=1$ ou 6.

Par ailleurs, les 5-Sylow sont d'ordre 5, ce sont donc les groupes engendrés par des 5-cycles, il y a 4 5-cycles dans chaque 5-Sylow et 24 5-cycles au total, donc il y a bien 6 5-Sylow.

Question.

Quel est le normalisateur du 5-Sylow $H := \langle (12345) \rangle$ dans \mathfrak{S}_5 ?

Réponse.

 $N(H)=\mathrm{Stab}(H)$ par l'action de conjugaison, donc $|N(H)|=\frac{|\mathfrak{S}_5|}{6}=20$ car les 5-Sylow sont conjugués.

Par ailleurs, $(2354)(12345)(2354)^{-1} = (13524) \in H$ donc $N(H) = \langle (2354), (12345) \rangle$ par cardinalité.