205 – Espaces complets. Exemples et applications.

Question.

Donner un exemple de fonction continue exactement sur $\mathbb{R} \setminus \mathbb{Q}$.

Réponse.

$$\begin{split} f:[0,1] &\longrightarrow \mathbb{R} \\ x &\longmapsto \left\{ \begin{array}{ll} 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & \text{si } x = \frac{p}{q}, p \wedge q = 1. \end{array} \right. \end{split}$$

 $\mathbb{R}\setminus\mathbb{Q}$ est dense dans \mathbb{R} donc pour p,q tels que $p\wedge q=1,$

$$\forall \varepsilon > 0, \exists x \in \mathbb{R} \setminus \mathbb{Q}, \quad |x - \frac{p}{q}| < \varepsilon.$$

On a alors f(x) = 0 et $f\left(\frac{p}{q}\right) = \frac{1}{q}$ donc f est discontinue sur \mathbb{Q} .

Soit $x \in \mathbb{R} \setminus \mathbb{Q}$, il existe une suite $\left(\frac{p_n}{q_n}\right)_{n \in \mathbb{N}}$ convergeant vers x car \mathbb{Q} est dense dans \mathbb{R} .

Si (q_n) est bornée, il en existe une sous-suite constante $(q_{\varphi(n)})$ car elle est à valeurs entières et donc $(p_{\varphi(n)})$ est constante à partir d'un certain rang car à valeurs entières et convergente. Finalement, $x=\lim \frac{p_{\varphi(n)}}{q_{\varphi(n)}} \in \mathbb{Q}$.

Ceci est exclu donc (q_n) n'est pas bornée et donc $f\left(\frac{p_n}{q_n}\right) = \frac{1}{q_n}$ converge vers 0, donc f est continue sur $\mathbb{R} \setminus \mathbb{Q}$.

Question.

Existe-t'il une fonction $f: \mathbb{R} \to \mathbb{R}$ continue exactement sur \mathbb{Q} ?

Réponse.

On note C_f l'ensemble des points de continuité de f et on montre que C_f est une intersection dénombrable d'ouverts.

On a

$$C_f = \bigcap_{n \in \mathbb{N}^*} \Omega_n \quad \text{avec} \quad \Omega_n := \{ x \in \mathbb{R} \mid \exists \eta > 0, (y, z) \in]x - \eta, x + \eta[^2 \Rightarrow |f(y) - f(z)| < \frac{1}{n} \}$$

et Ω_n est ouvert.

Or \mathbb{Q} n'est pas une intersection dénombrable d'ouverts. En effet, si $\mathbb{Q} = \bigcap_{n \in \mathbb{N}^*} \Omega_n$ avec Ω_n ouvert, alors

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{R} \setminus \mathbb{Q}$$

$$= \mathbb{Q} \cup (\bigcap_{n \in \mathbb{N}^*} \Omega_n)$$

$$= \bigcup_{x \in \mathbb{Q}} \{x\} \cup (\bigcup_{n \in \mathbb{N}^*} \Omega_n^c)$$

et donc $\mathbb R$ est une union dénombrable de fermés. D'après le lemme de Baire, un de ces fermés est d'intérieur non vide, ce ne peut pas être les $\{x\}$ donc c'est un Ω_n^c , ce qui contredit la densité de $\mathbb Q$.