Racine carrée d'une matrice symétrique réelle positive

2012-2013

Proposition.

Soit $H \in S_n^+(\mathbb{R})$.

Alors il existe une unique matrice $R \in S_n^+(\mathbb{R})$ telle que $H = \mathbb{R}^2$.

Démonstration.

– Existence : H est symétrique réelle donc il existe $P \in O_n(\mathbb{R})$ telle que :

$${}^{t}PHP = D = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})$$

avec $\lambda_i \in \mathbb{R}_+$.

On pose $S := \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$, on a $S^2 = D$. Alors $R := PS^tP \in S_n^+(\mathbb{R})$ et $R^2 = H$.

– Unicité : Soit $R \in S_n^+(\mathbb{R})$ telle que $R^2 = H$. Soient r et h les endomorphismes associés dans la base canonique, h est autoadjoint et $Sp(h) \subset \mathbb{R}_+$.

On note E_{λ_i} les sous-espaces propres correspondants à h, alors r commute avec h car $r^2 = h$, donc E_{λ_i} est stable par r.
On note $r_i = r_{|E_{\lambda_i}}$, on a $r_i^2 = \lambda_i \mathrm{id}_{E_{\lambda_i}}$.

Donc si $\mu \in Sp(r_i), \mu^2 = \lambda_i$, donc $\mu = \sqrt{\lambda_i}$ (car r_i est autoadjoint positif). Donc si $\mu \in Sp(r_i), \mu^- = \lambda_i$, donc $\mu - \sqrt{\lambda_i}$ donc $r_i = \sqrt{\lambda_i} \mathrm{id}_{E_{\lambda_i}}$.