218 - Applications des formules de Taylor

Simon Boulier

Maxime Pouvreau

29 avril 2013

E et F sont des evn de dimension finie, U est un ouvert de E et [a,b] est un intervalle non vide de \mathbb{R} .

1 Théorie

1.1 Préliminaires

Théorème fondamental de l'analyse Si $f \in \mathcal{C}(U, F)$ et si $[a, a+h] \subseteq U$ alors

$$f(a+h) - f(a) = \int_0^1 Df(a+th).h \, dt$$

Théorème des accroissements finis Soient $f \in \mathcal{C}([a,b],F)$ et $g \in \mathcal{C}([a,b],\mathbb{R})$ différentiables sur]a,b[. Si $||f'|| \leq ||g'||$ sur]a,b[, alors

$$||f(b) - f(a)|| \le g(b) - g(a)$$

1.2 Formules de Taylor

Notation On considère $f: U \to F$ et $a \in U$, et on note :

$$R_n^a(h) = f(a+h) - \sum_{k=0}^n \frac{1}{k!} D^k f(a).(h, h, \dots, h)$$

dès que cela a un sens.

Remarque $f \in \mathcal{C}^{\infty}(U, F)$ est polynomiale ssi il existe $n \in \mathbb{N}$ tel que $R_n = 0$.

Taylor-Young Si f est n fois différentiable en a, alors

$$R_n^a(h) = o(\|h\|^n)$$

Taylor-Lagrange Si f est n+1 fois différentiable sur U et $[a,a+h] \subseteq U$, alors

$$||R_n^a(h)|| \le \frac{||h||^{n+1}}{(n+1)!} \sup_{[a,a+h]} ||D^{n+1}f||$$

Taylor-Reste intégral Si f est C^{n+1} sur U et $[a, a+h] \subseteq U$, alors

$$R_n^a(h) = \int_0^1 \frac{(1-t)^n}{n!} D^{n+1} f(a+th).(h,h,\ldots,h) dt$$

1.3 Cas réel

Taylor-Lagrange (égalité) Si $f \in C^n([a,b],\mathbb{R})$ et est n+1 dérivable sur]a,b[, alors il existe $c \in]a, b[$ tel que

$$R_n^a(b-a) = \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

$\mathbf{2}$ Applications en analyse

Résultats issus des formules de Taylor

Inégalité de Kolmogorov Soient $f \in \mathcal{C}^n(\mathbb{R}, \mathbb{C}), n \geq 2$ et $M_k = \sup_{\mathbb{R}} |f^{(k)}|$. Si M_0 et M_n sont finis alors

- $\forall k \leq n, M_k \text{ est fini}$
- $-M_{1} \leq \sqrt{M_{0}M_{2}}$ $-\forall k \leq n, M_{k} \leq 2^{\frac{k(n-k)}{2}} M_{0}^{1-\frac{k}{n}} M_{n}^{\frac{k}{n}}$

Lemme de Bernstein Soient $I \subseteq \mathbb{R}$ et $f \in \mathcal{C}^{\infty}(I,\mathbb{R})$. Si $\forall n \in \mathbb{N}, f^{(n)} \geq 0$ sur I, alors la série de Taylor de f converge uniformément sur tout compact de l'intérieur I vers f.

Propriété Tout zéro d'ordre fini ¹ d'une fonction $f \in \mathcal{C}^{\infty}([a,b],F)$ est isolé.

Théorème de Darboux La dérivée d'une fonction dérivable réelle possède la propriété des valeurs intermédiaires.

Propriété Soient $P \in \mathbb{R}[X]$ un polynôme ayant au moins une racine réelle α et $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. Si pour tout $n \in \mathbb{N}$ $|f^{(n)}| \leq |P|$ alors f est nulle. Contre-exemple : $\sin x$ et $x^2 + 1$.

2.2Développements limités

On dit que $f: \mathbb{R} \to \mathbb{R}$ admet un DL en 0 à l'ordre n si f s'écrit $f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$. Si c'est le cas le DL est alors unique.

La formule de Taylor-Young implique l'existence d'un DL à l'ordre n pour une fonction n fois dérivable.

Exemples de DL usuels

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} + o(x^{n})$$
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^{n} + o(x^{n})$$

Propriété Si f admet un DL en 0 à l'ordre $n \ge 1$ alors f est dérivable en 0. Attention! Ce n'est pas vrai à l'ordre supérieur. Par exemple pour $f(x) = 1 + x + x^2 + x^3 \sin \frac{1}{x^2}$, f(0) = 1 on a $f(x) = 1 + x + x^2 + o(x^2)$ mais f n'est pas deux fois dérivable en 0.

2.3Formule d'Euler-MacLaurin

Les polynômes de Bernoulli $(B_n)_{n\in\mathbb{N}}$ et les nombres de Bernoulli $(b_n)_{n\in\mathbb{N}}$ sont définis par

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} \qquad b_n = B_n(0)$$

^{1.} ie. tel qu'il existe une dérivée de f qui ne s'y annule pas

Formule Soient $m < n \in \mathbb{Z}$, $r \le 1$ et $f \in \mathcal{C}^r([m, n], \mathbb{C})$. On a alors

$$\frac{f(m) + f(n)}{2} + \sum_{i=m+1}^{n-1} f(i) = \int_{m}^{n} f(t) dt + \sum_{i=2}^{r} \frac{b_{i}}{i!} (f^{(k-1)}(n) - f^{(k-1)}(m)) + R_{r}$$

avec
$$R_r = \frac{(-1)^{r+1}}{r!} \int_m^n B_r(\{t\}) f^{(r)}(t) dt$$
.

Applications

- Développement asymptotique de H_n
- Formule de Stirling précisée
- Prolongement de ζ à $\mathbb{C} \setminus \{1\}$

3 Applications en analyse numérique

Proposition Si
$$f \in \mathcal{C}^2(I, \mathbb{R})$$
 alors $\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$.

3.1 Méthode de Newton

On cherche à approcher le zéro d'une fonction $f:[a,b]\to\mathbb{R}$. Supposons que f soit \mathcal{C}^2 , que f(a)<0< f(b) et que f'>0 sur [a,b]. Alors pour x_0 suffisamment proche du zéro de f, la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$ converge vers le zéro avec une vitesse quadratique.

Exemple : Méthode de Héron Si on considère $x_0 = 1$ et $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$ $(f(x) = x^2 - 2)$, on a $x_n \underset{n \to +\infty}{\longrightarrow} \sqrt{2}$. Et plus précisément on a :

$$|x_{n+1} - \sqrt{2}| \le |x_n - \sqrt{2}|^2$$

d'où $x_{10} \simeq \sqrt{2}$ à 10^{-308} près!

3.2 Approximations d'intégrales

On dit qu'une méthode de calcul approché est d'ordre n si elle est exacte pour les polynômes de degré inférieur à n.

Méthodes composés On cherche une valeur approchée de l'intégrale de $f:[a,b] \to \mathbb{R}$. Pour cela on subdivise $[a,b]: a=a_0 < a_1 < \cdots < a_n = b$, puis on approche l'intégrale de f sur chaque segment $[a_i,a_{i+1}]$ par l'intégrale de P_i un polynôme interpolant f sur ce segment. On note alors $S_n(f) = \sum_{i=0}^{n-1} \int_{a_i}^{a_{i+1}} P_i$ et $e_n(f) = |S_n(f) - \int_a^b f|$. On note aussi $h = \max(a_{i+1} - a_i)$ le pas.

Méthode	P_{i}	$S_n(f)$	Ordre	Majorant de $e_n(f)$
Rectangles à gauche	$f(a_i)$	$\sum_{i=0}^{n-1} (a_{i+1} - a_i) f(a_i)$	0	$\frac{h(b-a)}{2}M_1 \text{ si } f \mathcal{C}^1$
Point milieu	$f(\frac{a_{i+1}+a_i}{2})$	$\sum_{i=0}^{n-1} (a_{i+1} - a_i) f(\frac{a_{i+1} + a_i}{2})$	1	$\frac{h^2(b-a)}{24}M_2 \text{ si } f \mathcal{C}^2$
Trapèzes	polynôme d'interpolation de Lagrange en a_i et a_{i+1}	$\sum_{i=0}^{n-1} (a_{i+1} - a_i) \frac{f(a_{i+1}) + f(a_i)}{2}$	1	$\frac{h^2(b-a)}{12}M_2 \text{ si } f \mathcal{C}^2$
Simpson	polynôme d'interpolation de Lagrange en a_i , $\frac{a_{i+1}+a_i}{2}$ et a_{i+1}	$\sum_{i=0}^{n-1} (a_{i+1} - a_i) \frac{f(a_{i+1}) + 4f(\frac{a_{i+1} + a_i}{2}) + f(a_i)}{6}$	3	$\frac{h^4(b-a)}{2880}M_4 \text{ si } f \ \mathcal{C}^4$

Méthode de Gauss On cherche cette fois à approximer l'intégrale de f contre une fonction poids $w:[a,b] \to \mathbb{R}_+^*$ par $\sum_{i=1}^l \lambda_i f(x_i)$.

Théorème Il existe un et un seul choix des x_i et des λ_i tel que la méthode soit d'ordre 2l + 1. Les x_i sont les racines du (l + 1)-ème polynôme orthogonal associé à w.

4 Applications en géométrie

4.1 Quadriques et extrema

Soit $f: U \to \mathbb{R}$ et $a \in U$.

Proposition Si f admet un minimum local en a et si f est différentaible en a, alors Df(a) = 0.

Proposition Si f est deux fois différentiables et si Df(a) = 0 alors :

- a minimum local $\Rightarrow D^2 f(a)$ positive
- $-D^2f(a)$ définie positive $\Rightarrow a$ minimum local

Exemple $f(x,y) = x^2 - y^3$ n'a pas de minimum local en zéro mais Df(0) = 0 et $D^2f(0)$ positive. $g(x,y) = x^2 + y^4$ a un minimum local en zéro donc Dg(0) = 0 mais $D^2g(0)$ non définie positive.

Remarque Ce résultat se généralise à l'ordre supérieur.

Quadriques Soit $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$ deux fois différentiable en a (un point critique) de Hessienne $\begin{pmatrix} r & s \\ s & t \end{pmatrix}$ en ce point. Alors :

- si $rt s^2 > 0$ f admet un extremum local en a (un min si r > 0, un max si r < 0).
- si $rt s^2 < 0$ f n'admet pas d'extremum local en a.
- si $rt s^2 = 0$ on ne peut pas conclure.

4.2 Courbes et surfaces

Courbe parametrée Soit $f: I \to \mathbb{R}^2$ une courbe parametrée de classe \mathcal{C}^n . Alors la première dérivée non nulle, $f^{(r)}(t_0)$, et la première dérivée non colinéaire à cele-ci, $f^{(s)}(t_0)$, donnent l'aspect local de la courbe en t_0 .

- si r est impair et s pair, la courbe ne coupe pas sa tangente en t_0
- si r est impair et s impair, t_0 est un point d'inflexion
- si r est pair et s impair, t_0 est un point de rebroussement de première espèce
- si r est pair et s pair, t_0 est un point de rebroussement de seconde espèce

Nappe parametrée Soit $f:\Omega\to\mathbb{R}^3$ une courbe parametrée de classe \mathcal{C}^2 . Alors $f(x,y)=a+bx+cy+\frac{1}{2}(rx^2+2sxy+ty^2)+o(x^2+y^2)$ en 0. Le plan tangent en 0 est a+bx+cy=0 et la position relative est donnée par l'étude de la forme quadratique $Q(x,y)=rx^2+2sxy+ty^2$.

- si Q est définie positive, 0 est un point elliptique.
- si Q est non dégénérée mais non définie, 0 est un point hyperbolique.
- si Q est dégénérée mais non nulle, 0 est un point parabolique.

Lemme de Morse Soient $U \subseteq \mathbb{R}^n$ un ouvert contenant 0 et $f \in \mathcal{C}(U,\mathbb{R})$. Si Df(0) = 0 et $D^2f(0)$ est non dégénérée de signature (p, n - p), alors il existe un difféormorphisme $\phi : x \mapsto u$ entre deux voisinages de 0 tel que $\phi(0) = 0$ et :

$$f(x) - f(0) = u_1^2 + \dots + u_n^2 - u_{n+1}^2 - \dots - u_n^2$$

Références

- Beck, V., Malick, J., Peyré, G. (2005). Objectif agrégation: mathématiques. H & K.
- Cartan, H. (1977). Cours de calcul différentiel. Hermann.
- Demailly, J. P. (2012). Analyse numérique et équations différentielles (Nouvelle édition). EDP sciences.
- Francinou, G. Nicolas, Exercices de mathématiques. Oraux X-ENS. Analyse, 1.
- Gostiaux, B. (1993). Cours de mathématiques Spéciales, tome 3 : Analyse fonctionnel et calcul différentiel.
- Gourdon, X. (2000). Les maths en tête : analyse : mathématiques pour M'. Ellipses.
- Pommellet, A. (1994). Cours d'analyse.
- Queffélec, H., Zuily, C. (2002). Éléments d'analyse : agrégation de mathématiques. Dunod.
- Rouvière, F. (1999). Petit guide de calcul différentiel : à l'usage de la licence et de l'agrégation.
 Cassini.