Courbe brachistochrone

Salim Rostam

22 mai 2014

Avertissement. Ce développement peut se placer dans plusieurs leçons, à condition de parfois le remodeler, par exemple de la façon suivante :

- 215 (applications différentiables définies sur un ouvert de \mathbb{R}^n), 216 (étude métrique des courbes) et 220 (équations différentielles X' = f(t, X)): on peut ne pas faire la section 4 d'existence mais seulement donner l'idée;
- 219 (extrema : existence, caractérisation, recherche), 229 (fonctions monotones, fonctions convexes) et 253 (utilisation de la notion de convexité en analyse) : on peut ne pas faire la sous-section 3.2 de résolution de l'équation différentielle mais seulement donner l'astuce et bien sûr le résultat.

Théorème. Étant donné un mobile ponctuel dans \mathbb{R}^2 , la manière la plus rapide pour relier deux points est de décrire un arc de cycloïde.

1 Notations

On munit \mathbb{R}^2 d'un repère avec l'axe des abscisses horizontal orienté vers la droite et l'axe des ordonnées vertical orienté vers le bas. On suppose que le mobile relie l'origine (0,0) à (a,b) en un temps T, avec a,b>0; on note (x(t),y(t)) les coordonnées du mobile à l'instant t. Comme la téléportation n'est pas dans les hypothèses, on a $x,y\in \mathcal{C}[0,T]$. De plus, ce serait également bien le diable si l'on n'avait pas $x,y\in \mathcal{C}^1(0,T)$. Finalement, notre sens physique nous dit que x est croissante, et l'on va supposer que x est strictement croissante i.e. le mobile ne décrit pas de portion verticale : ainsi, on peut écrire y=f(x) avec $f\in \mathcal{C}[0,a]\cap \mathcal{C}^1(0,a), f(0)=0$ et f(a)=b. De plus, on a également $f|_{[0,a]}>0$ (car si le mobile arrive en un point d'ordonnée nulle il ne peut plus repartir, cf. ce qui va suivre).

2 Mise en équation

Grâce au théorème de l'énergie cinétique, on sait que la somme de l'énergie cinétique et de l'énergie potentielle est constante, c'est-à-dire $E_c+E_{pp}=E_c^0+E_{pp}^0$. Or, la vitesse initiale étant nulle par hypothèse on a $E_c=\frac{1}{2}m\,0^2=0$ et $E_{pp}=-mg\,0=0$ donc finalement on a $v^2=2gh$, ce qui se réécrit $\dot{x}^2+\dot{y}^2=2gy$. D'après la section précédente,

on a donc:

$$\left[1 + f'(x)^2\right]\dot{x}^2 = 2gf(x)$$

Comme f(x) > 0 si t > 0 on peut diviser et l'on a :

$$\sqrt{\frac{1+f'(x)^2}{f(x)}}\dot{x} = \sqrt{2g}$$

puis, en intégrant :

$$\int_0^T \sqrt{\frac{1 + f'(x(t))^2}{f(x(t))}} \dot{x}(t) dt = \sqrt{2g}T$$

et, comme $\dot{x} > 0$ on peut faire un changement de variable pour obtenir :

$$J(f) := \int_0^a \sqrt{\frac{1 + f'(x)^2}{f(x)}} \, dx = \sqrt{2g}T$$

On doit donc minimiser la fonctionnelle J dans l'espace $E := \{ f \in \mathcal{C}[0, a] \cap \mathcal{C}^1(0, a) : f(0) = 0, f(a) = b, f|_{[0,a]} > 0 \}.$

3 Condition nécessaire de minimum

3.1 Établissement d'une équation différentielle

Tout d'abord, on peut remarquer que J est une intégrale impropre : pour un $f \in E$ donné, il n'est pas assuré que $J(f) < \infty$. En considérant le segment qui relie (0,0) à (a,b), on peut quand même remarquer que inf $_E J < \infty$ (ouf!).

Supposons que J atteigne un minimum sur E, en un point f; par ce qui précède on a $J(f) < \infty$. Le problème majeur est que J n'est pas définie sur un ouvert d'un espace vectoriel : on ne peut donc par parler de sa différentielle et dire que $\mathrm{D}J(f)=0$. Néanmoins, avec $E_0:=\mathcal{C}^1_0(0,a)$, on a :

$$\forall g \in E_0, \exists \eta > 0, \forall t \in]-\eta, \eta[, f + tg \in E \text{ et } J(f + tg) < \infty$$

donc:

$$\forall g \in E_0, \frac{\mathrm{d}}{\mathrm{d}t} J(f + tg) \Big|_{t=0} = 0$$

Pour simplifier les notations, notons $L(u,v):=\sqrt{\frac{1+v^2}{u}}$ et [f(x)]=(f(x),f'(x)); ainsi, $J(f)=\int_0^a L[f(x)]\,\mathrm{d}x$. L'égalité précédente donne donc :

$$\forall g \in E_0, \int_0^a \left[\partial_u L[f]g + \partial_v L[f]g' \right] dx = 0$$

et en intégrant par parties on trouve, comme g est à support compact :

$$\forall g \in E_0, \int_0^a \left[\partial_u L[f] - \frac{\mathrm{d}}{\mathrm{d}x} \partial_v L[f] \right] g \, \mathrm{d}x = 0$$

(il ne suffit pas que g vaille 0 au bord pour que $[\partial_v L[f]g]_0^a = 0$ car on ne connaît pas le comportement de $\partial_v L[f]$ au bord). Finalement, en considérant des fonctions g du type $(x-\alpha)^2(\beta-x)^2\mathbf{1}_{[\alpha,\beta]}$, on trouve que la fonction entre crochets dans l'intégrale précédente ne peut pas être strictement positive ou négative sur chaque $[\alpha,\beta] \subseteq]0,a[$: elle est donc nulle, ce qui s'écrit (et s'appelle « équation d'Euler-Lagrange »):

$$\partial_u L[f] - \frac{\mathrm{d}}{\mathrm{d}x} \partial_v L[f] = 0$$
 (EL)

En explicitant les quantités qui interviennent 1 , on trouve que f vérifie l'équation différentielle suivante :

$$(1+f'^2)f = C$$

3.2 Résolution de l'équation différentielle

On peut tout d'abord remarquer deux choses :

- l'équation différentielle se réécrit $f'^2 = \frac{C}{f} 1$ donc, sur la portion où f' > 0 on a $f' = \sqrt{\frac{C}{f} 1}$ et le théorème de Cauchy–Lipschitz local s'applique (youpi!);
- comme $C \neq 0$ (car $f(a) = b \neq 0$ par exemple) on a donc $|f'(0)| = \infty$; en particulier, on a bien fait de ne pas choisir f dérivable en 0!

Comme on ne sait pas intégrer à vue $\frac{f'}{\sqrt{\frac{C}{f}-1}}$ on va devoir ruser. Pour cela, on

remarque que le terme $1+f'^2$ peut faire penser à de l'arc tangente. Pour une simple question d'esthétique, on va plutôt poser $\theta:=2 \operatorname{arccot} f'$. Ainsi, on a $f'=\cot\frac{\theta}{2}$ donc $1+f'^2=\frac{1}{\sin^2\frac{\theta}{2}}$; d'après l'équation différentielle vérifiée par f, on a donc :

$$f = C\sin^2\frac{\theta}{2}$$

En dérivant cette dernière relation, on obtient $f'=C\theta'\sin\frac{\theta}{2}\cos\frac{\theta}{2}$, donc comme $f'=\cot\frac{\theta}{2}=\frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}$ on obtient :

$$1 = C\theta' \sin^2 \frac{\theta}{2}$$

On est content car l'on sait intégrer! Ainsi, en écrivant $\sin^2\frac{\theta}{2}=\frac{1-\cos\theta}{2}$ on obtient $x=\frac{C}{2}[\theta-\sin\theta]_0^x$; comme $|f'(0)|=\infty$, on a $\theta(0)=0$ donc on obtient :

$$x = \frac{C}{2}(\theta - \sin \theta)$$

Finalement, comme on a vu que:

$$y = f(x) = C \sin^2 \frac{\theta}{2} = \frac{C}{2} (1 - \cos \theta)$$

^{1.} Les calculs, que l'on peut passer pendant le développement, se trouvent dans l'annexe A.

la courbe décrite est bien une branche de cycloïde ².

4 Existence du minimum

On désire justifier que la fonctionnelle $J: f \in E \mapsto \int_0^a \sqrt{\frac{1+f'(x)^2}{f(x)}} \, \mathrm{d}x$ possède un (unique) minimum, avec rappelons-le $E = \{f \in \mathcal{C}[0,a] \cap \mathcal{C}^1(0,a) : f(0) = 0, f(a) = b, f|_{[0,a]} > 0\}$. Pour cela, on va utiliser un argument de convexité.

L'ensemble E est bien convexe, mais comme on l'a déjà remarqué ce n'est pas un ouvert d'un espace vectoriel : on ne peut donc pas utiliser de caractérisation classique de convexité. On va contourner ce problème en regardant la fonction $L:(u,v)\mapsto \sqrt{\frac{1+v^2}{u}}$, qui elle est définie sur le convexe $\mathbb{R}_+^*\times\mathbb{R}$. Finalement, rappelons la notation [u]:=(u,u').

Désignons par f_0 une solution de l'équation différentielle (EL) obtenue précédemment. En supposant que L est strictement convexe, on obtient donc, pour $g \neq 0$ telle que $f_0 + g \in E$ et $J(f_0 + g) < \infty$:

$$J(f_0 + g) - J(f_0) = \int_0^a L[f_0 + g] - L[f_0] dx$$

$$> \int_0^a \langle \nabla L[f_0], [g] \rangle dx \text{ (par stricte convexit\'e de } L)$$

$$= \int_0^a \partial_u L[f_0]g + \partial_v L[f_0]g' dx$$

$$= \int_0^a \left(\frac{\mathrm{d}}{\mathrm{d}x} \partial_v L[f_0]\right) g + \partial_v L[f_0]g' dx \text{ (car } f_0 \text{ est solution de (EL))}$$

$$= [\partial_v L[f_0]g]_0^a$$

Ainsi, comme g(0) = g(a) = 0 (car $f_0 + g \in E$), on en déduit que si $\partial_v L[f_0]$ est bornée sur]0, a[on a $J(f_0 + g) - J(f_0) > 0$, et donc que f_0 est un minimum global de J sur E.

Il suffit donc de montrer que L est convexe sur $\mathbb{R}_+^* \times \mathbb{R}$ et que $\partial_v L$ est bornée sur ce même ensemble : malheureusement, cette dernière condition n'est pas vérifiée, puisque $\partial_v L = \frac{v}{\sqrt{u(1+v^2)}}$ (note ³). Pour cela, on va considérer un autre problème de minimisation.

Comme la racine nous dérange dans l'expression de J on va poser, pour $f \in E$, $g := \sqrt{2f}$ (le facteur 2 est fait pour tomber juste dans la suite). On a donc $f = \frac{g^2}{2}$ et f' = gg', d'où :

$$J(f) = \int_0^a \sqrt{\frac{1 + f'^2}{f}} \, \mathrm{d}x = \int_0^a \sqrt{\frac{1 + g^2 g'^2}{\frac{g^2}{2}}} \, \mathrm{d}x = \sqrt{2} \int_0^a \sqrt{\frac{1}{g^2} + g'^2} \, \mathrm{d}x =: \sqrt{2} \widetilde{J}(g)$$

^{2.} Dans la leçon sur l'étude de courbes, on peut mettre ce résultat dans le plan; sinon, on l'admet (faire un dessin pour le retrouver; la seule chose délicate est de remarquer que la condition de roulement sans glissement se traduit par le fait que la distance parcourue par le cercle est égale à la longueur de l'arc qui a touché le sol).

^{3.} En fait, en calculant la matrice hessienne on peut constater que L n'est même pas convexe!

On obtient donc une fonctionnelle \widetilde{J} définie sur l'espace $\widetilde{E} := \{\sqrt{2f} : f \in E\}$; on a $\widetilde{J}(g) = \int_0^a \widetilde{L}[g] dx$ avec $\widetilde{L}(u,v) := \sqrt{\frac{1}{u^2} + v^2}$. Cette fonction \widetilde{L} vérifie $\partial_v \widetilde{L} = \frac{v}{\sqrt{\frac{1}{u^2} + v^2}}$

donc $|\partial_v \widetilde{L}| \le 1$ donc est borné. De plus ⁴ on a :

- $-\partial_{vv}\widetilde{L} = u^{-2}(u^{-2} + v^2)^{-\frac{3}{2}}$
- $-\partial_{uu}\widetilde{L} = u^{-3}v(u^{-2} + v^2)^{-\frac{3}{2}}$:
- $-\partial_u \tilde{L} = -u^{-3}(u^{-2} + v^2)^{-\frac{1}{2}};$

 $\begin{array}{l} \partial_u L = -u & (u + v)^{-2}, \\ -\partial_{uu} = u^{-4} (u^{-2} + v^2)^{-\frac{3}{2}} (2u^{-2} + v^2); \\ \text{donc la hessienne de } \widetilde{L} \text{ est } \begin{pmatrix} 2u^{-4} (u^{-2} + v^2)^{-\frac{3}{2}} (2u^{-2} + v^2) & u^{-3} v (u^{-2} + v^2)^{-\frac{3}{2}} \\ u^{-3} v (u^{-2} + v^2)^{-\frac{3}{2}} & u^{-2} (u^{-2} + v^2)^{-\frac{3}{2}} \end{pmatrix} \text{ qui est définie positive (la trace est positive et le déterminant est } 2u^{-8} (u^{-2} + v^2)^{-3} > 0) \text{ donc } \widetilde{L} \text{ est } \end{array}$ strictement convexe.

Ainsi, d'après ce qui a été fait au début de la section, pour montrer que $g_0 := \sqrt{2f_0}$ est un minimum strict de \widetilde{J} sur \widetilde{E} il suffit de montrer que g_0 vérifie l'équation d'Euler-Lagrange associée à \widetilde{L} . Ainsi, on a $\frac{d}{dx}\partial_v\widetilde{L} = v'(u^{-2} + v^2)^{-\frac{1}{2}} - v(-u'u^{-3} + vv')(u^{-2} + v^2)^{-\frac{3}{2}} =$ $u^{-3}(u^{-2}+v^2)^{-\frac{3}{2}}(uv)'$, d'où:

$$\partial_u \widetilde{L}[g_0] - \frac{\mathrm{d}}{\mathrm{d}x} \partial_v \widetilde{L}[g_0] = -g_0^{-3} (g_0^{-2} + g_0'^2)^{-\frac{1}{2}} - g_0^{-3} (g_0^{-2} + g_0'^2)^{-\frac{3}{2}} (g_0 g_0')'$$
$$= -g_0^{-3} (g_0^{-2} + g_0'^2)^{-\frac{3}{2}} [g_0^{-2} + g_0'^2 + (g_0 g_0')']$$

et il suffit donc de montrer que $g_0^{-2} + g_0'^2 + (g_0g_0')' = 0$. C'est le cas puisque $g_0^{-2} + g_0'^2 + (g_0g_0')' = (2f_0)^{-1} + f_0'^2(2f_0)^{-1} + f_0''$ et en multipliant par $2f_0$ on trouve $1 + f_0'^2 + 2f_0f_0''$ et cette dernière expression est nulle car f_0 vérifie (EL) (i.e. $(1 + f_0^{\prime 2})f_0 = C$).

Finalement, si $f \in E, f \neq f_0$ est telle que $J(f) < \infty$ alors avec $g := \sqrt{2f}$ on a :

$$J(f) = \widetilde{J}(g) > \widetilde{J}(g_0) = J(f_0)$$

donc f_0 est bien un minimum global de J sur E.

Références

- [1] TESTARD Frédéric, Analyse mathématique, la maîtrise de l'implicite. Calvage & Mounet, 2012.
- [2] COLEMAN Rodney, A Detailed Analysis of the Brachistochrone Problem. http: //arxiv.org/pdf/1001.2181v2.pdf (2012).

Explicitation de l'équation d'Euler-Lagrange

On cherche à expliciter l'équation $\partial_u L[f] - \frac{\mathrm{d}}{\mathrm{d}x} \partial_v L[f] = 0$ avec $L(u,v) = \sqrt{\frac{1+v^2}{u}} = 0$ $u^{-\frac{1}{2}}(1+v^2)^{\frac{1}{2}}$.

^{4.} On peut passer tous les calculs qui vont suivre.

Calcul des dérivées partielles de L. On a $\partial_u L = -\frac{1}{2}u^{-\frac{3}{2}}(1+v^2)^{\frac{1}{2}} = -\frac{L}{2u}$ et $\partial_v L = u^{-\frac{1}{2}}v(1+v^2)^{-\frac{1}{2}} = \frac{vL}{1+v^2}$.

Calcul de $\frac{d}{dx}\partial_v L$. On a $\frac{d}{dx}\partial_v L = \frac{d}{dx}\left(\frac{vL}{1+v^2}\right) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v'^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v'^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v'^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v'^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L + v'\partial_v L) = \frac{v'L}{1+v^2} - 2\frac{v'^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2}(u'\partial_u L + v'\partial_v L$

 $\begin{aligned} & \textbf{Final.} \quad \text{L'équation (EL) devient alors} - \frac{L}{2u} - \left[\frac{v'L}{1+v^2} - 2\frac{v^2v'L}{(1+v^2)^2} + \frac{v}{1+v^2} (-\frac{u'L}{2u} + \frac{vv'L}{1+v^2}) \right] = 0 \\ & \text{donc en simplifiant par } L \text{ et en développant on trouve} - \frac{1}{2u} - \frac{v'}{1+v^2} + 2\frac{v^2v'}{(1+v^2)^2} + \frac{u'v}{2u(1+v^2)} - \frac{v^2v'}{(1+v^2)^2} = -\frac{1}{2u} - \frac{v'}{1+v^2} + \frac{v^2v'}{(1+v^2)^2} + \frac{u'v}{2u(1+v^2)} = 0 \text{ d'où en multipliant par } 2u(1+v^2)^2, \\ & - (1+v^2)^2 - 2uv'(1+v^2) + 2uv^2v' + u'v(1+v^2) = 0 \text{ donc en simplifiant :} \end{aligned}$

$$-(1+v^2)^2 - 2uv' + u'v(1+v^2) = 0$$

On cherche à évaluer en [f] donc on remplace v par u' dans l'équation précédente : on trouve $-(1+u'^2)^2-2uu''+u'^2(1+u'^2)=0$ d'où

$$-1 - u'^2 - 2uu'' = 0$$

En multipliant par u', on trouve finalement $u' + u'^3 + 2uu'u'' = 0$ i.e.

$$\left(u + uu^{\prime 2}\right)' = 0$$

d'où le résultat.